Title: | Open Machine Learning and Open Data Platform |
Description: | We provide an R interface to 'OpenML.org' which is an online machine learning platform where researchers can access open data, download and upload data sets, share their machine learning tasks and experiments and organize them online to work and collaborate with other researchers. The R interface allows to query for data sets with specific properties, and allows the downloading and uploading of data sets, tasks, flows and runs. See https://www.openml.org/guide/api for more information. |
Author: | Giuseppe Casalicchio <giuseppe.casalicchio@stat.uni-muenchen.de>, Bernd Bischl <bernd_bischl@gmx.net>, Dominik Kirchhoff <dom.kirchhoff@gmail.com>, Michel Lang <michellang@gmail.com>, Benjamin Hofner <benjamin.hofner@fau.de>, Jakob Bossek <j.bossek@gmail.com>, Pascal Kerschke <kerschke@uni-muenster.de>, Joaquin Vanschoren <joaquin.vanschoren@gmail.com> |
Maintainer: | Giuseppe Casalicchio <giuseppe.casalicchio@stat.uni-muenchen.de> |
License: | BSD_3_clause + file LICENSE |
URL: | https://github.com/openml/openml-r |
BugReports: | https://github.com/openml/openml-r/issues |
Depends: | R (≥ 3.5.0) |
Suggests: | testthat (≥ 3.0.0), mlr (≥ 2.15), ParamHelpers (≥ 1.10), randomForest, rpart, RWeka, xml2, farff, knitr, rmarkdown, R.rsp, rex |
Imports: | backports (≥ 1.1.0), BBmisc (≥ 1.11), checkmate (≥ 1.8.2), data.table, digest, httr (≥ 1.4.1), stringi, XML, jsonlite, memoise (≥ 1.0.0), stats, curl (≥ 4.1) |
ByteCompile: | yes |
Version: | 1.12 |
RoxygenNote: | 7.2.1 |
VignetteBuilder: | R.rsp |
Encoding: | UTF-8 |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2022-10-19 19:11:07 UTC; GDaddy |
Repository: | CRAN |
Date/Publication: | 2022-10-19 20:27:50 UTC |
OMLDataSet.
Description
An OMLDataSet
consists of an OMLDataSetDescription
, a
data.frame
containing the data set, the old and new column names and,
finally, the target features.
The OMLDataSetDescription
provides information on the data set,
like the ID, name, version, etc. To see a full list of all elements, please see the
documentation.
The slot colnames.old
contains the original names, i.e., the column names that were
uploaded to the server, while colnames.new
contains the names that you will see when
working with the data in R.
Most of the time, old and new column names are identical. Only if the original names are
not valid, the new ones will differ.
The slot target.features
contains the column name(s) from the data.frame
of the OMLDataSet
that refer to the target feature(s).
Usage
makeOMLDataSet(
desc,
data,
colnames.old = colnames(data),
colnames.new = colnames(data),
target.features = NULL
)
Arguments
desc |
[ |
data |
[ |
colnames.old |
[ |
colnames.new |
[ |
target.features |
[ |
Value
[OMLDataSet
]
See Also
Other data set-related functions:
OMLDataSetDescription
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
Examples
data("airquality")
dsc = "Daily air quality measurements in New York, May to September 1973.
This data is taken from R."
cit = "Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical
Methods for Data Analysis. Belmont, CA: Wadsworth."
desc_airquality = makeOMLDataSetDescription(name = "airquality",
description = dsc,
creator = "New York State Department of Conservation (ozone data) and the National
Weather Service (meteorological data)",
collection.date = "May 1, 1973 to September 30, 1973",
language = "English",
licence = "GPL-2",
url = "https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html",
default.target.attribute = "Ozone",
citation = cit,
tags = "R")
airquality_oml = makeOMLDataSet(desc = desc_airquality,
data = airquality,
colnames.old = colnames(airquality),
colnames.new = colnames(airquality),
target.features = "Ozone")
Construct OMLDataSetDescription.
Description
Creates a description for an OMLDataSet. To see a full list of all elements, please see the documentation.
Usage
makeOMLDataSetDescription(
id = 0L,
name,
version = "0",
description,
format = "ARFF",
creator = NA_character_,
contributor = NA_character_,
collection.date = NA_character_,
upload.date = as.POSIXct(Sys.time()),
language = NA_character_,
licence = NA_character_,
url = NA_character_,
default.target.attribute = NA_character_,
row.id.attribute = NA_character_,
ignore.attribute = NA_character_,
version.label = NA_character_,
citation = NA_character_,
visibility = NA_character_,
original.data.url = NA_character_,
paper.url = NA_character_,
update.comment = NA_character_,
md5.checksum = NA_character_,
status = NA_character_,
tags = NA_character_
)
Arguments
id |
[ |
name |
[ |
version |
[ |
description |
[ |
format |
[ |
creator |
[ |
contributor |
[ |
collection.date |
[ |
upload.date |
[ |
language |
[ |
licence |
[ |
url |
[ |
default.target.attribute |
[ |
row.id.attribute |
[ |
ignore.attribute |
[ |
version.label |
[ |
citation |
[ |
visibility |
[ |
original.data.url |
[ |
paper.url |
[ |
update.comment |
[ |
md5.checksum |
[ |
status |
[ |
tags |
[ |
See Also
Other data set-related functions:
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
Examples
data("airquality")
dsc = "Daily air quality measurements in New York, May to September 1973.
This data is taken from R."
cit = "Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical
Methods for Data Analysis. Belmont, CA: Wadsworth."
desc_airquality = makeOMLDataSetDescription(name = "airquality",
description = dsc,
creator = "New York State Department of Conservation (ozone data) and the National
Weather Service (meteorological data)",
collection.date = "May 1, 1973 to September 30, 1973",
language = "English",
licence = "GPL-2",
url = "https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html",
default.target.attribute = "Ozone",
citation = cit,
tags = "R")
airquality_oml = makeOMLDataSet(desc = desc_airquality,
data = airquality,
colnames.old = colnames(airquality),
colnames.new = colnames(airquality),
target.features = "Ozone")
OMLIOData.
Description
Objects of class OMLIOData
are used to return information about all inputs
and outputs of OMLRuns
. Each object may contain up to three data.frames
,
containing information on datasets
("data.id", "name", "url"), files
("data.id", "name", "url")
and/or evaluations
.
Do chunked listings
Description
Allows you to do multiple chunked requests with the listOML* functions.
The request will be repeated until total.limit
is reached or until there are no more results available on the server.
Usage
chunkOMLlist(listfun, ..., total.limit = 1e+05, chunk.limit = 1000)
Arguments
listfun |
[ |
... |
[ |
total.limit |
[ |
chunk.limit |
[ |
See Also
Other listing functions:
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
Clear cache directories
Description
Delete all cached objects and recreate cache directories.
Usage
clearOMLCache()
Examples
# \dontrun{
# clearOMLCache()
# }
OpenML configuration.
Description
After loading the package, it tries to find a configuration in your home
directory. The R command path.expand("~/.openml/config")
gives you the
full path to the configuration file on your operating system.
For further information please read the vignette.
Note
By default the cache directory is located in a temporary directory and the cache will be deleted in between R sessions. We thus recommend to set the cache directory by hand.
See Also
Other config:
getOMLConfig()
,
loadOMLConfig()
,
saveOMLConfig()
,
setOMLConfig()
Converts an OMLFlow to an mlr learner.
Description
Creates an OMLFlow
for an mlr Learner
]
Required if you want to upload an mlr learner to the OpenML server.
Usage
convertMlrLearnerToOMLFlow(
lrn,
name = paste0("mlr.", lrn$id),
description = NULL,
...
)
Arguments
lrn |
[ |
name |
[ |
description |
[ |
... |
[ |
Value
[OMLFlow
].
Converts a mlr task to an OpenML data set.
Description
Converts a Task
to an OMLDataSet
.
Usage
convertMlrTaskToOMLDataSet(task, description = NULL)
Arguments
task |
[ |
description |
[ |
Value
[OMLDataSet
].
See Also
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
Convert an OpenML data set to mlr task.
Description
Converts an OMLDataSet
to a Task
.
Usage
convertOMLDataSetToMlr(
obj,
mlr.task.id = "<oml.data.name>",
task.type = NULL,
target = obj$desc$default.target.attribute,
ignore.flagged.attributes = TRUE,
drop.levels = TRUE,
fix.colnames = TRUE,
verbosity = NULL
)
Arguments
obj |
[ |
mlr.task.id |
[ |
task.type |
[ |
target |
[ |
ignore.flagged.attributes |
[ |
drop.levels |
[ |
fix.colnames |
[ |
verbosity |
[ |
Value
[Task
].
See Also
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
Examples
# \dontrun{
# library("mlr")
# autosOML = getOMLDataSet(data.id = 9)
# autosMlr = convertOMLDataSetToMlr(autosOML)
# }
Converts a flow to a mlr learner.
Description
Converts an OMLFlow
that was originally created with the OpenML
R-package to a Learner
.
Usage
convertOMLFlowToMlr(flow)
Arguments
flow |
[ |
Value
[Learner
].
See Also
Other flow-related functions:
deleteOMLObject()
,
getOMLFlow()
,
listOMLFlows()
,
makeOMLFlowParameter()
,
makeOMLFlow()
,
tagOMLObject()
Convert OMLMlrRun
s to a BenchmarkResult
.
Description
Converts one or more OMLMlrRun
s to a BenchmarkResult
.
Usage
convertOMLMlrRunToBMR(...)
Arguments
... |
Value
See Also
Other run-related functions:
convertOMLRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRunParameter()
,
makeOMLRun()
,
tagOMLObject()
,
uploadOMLRun()
Convert an OpenML run set to a benchmark result for mlr.
Description
Converts an OMLRun
to a BenchmarkResult
.
Usage
convertOMLRunToBMR(
run,
measures = run$task.evaluation.measure,
recompute = FALSE
)
Arguments
run |
[ |
measures |
[ |
recompute |
[ |
Value
See Also
Other run-related functions:
convertOMLMlrRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRunParameter()
,
makeOMLRun()
,
tagOMLObject()
,
uploadOMLRun()
Convert an OpenML task to mlr.
Description
Converts an OMLTask
to a list of Task
,
ResampleInstance
and Measure
.
Usage
convertOMLTaskToMlr(
obj,
measures = NULL,
mlr.task.id = "<oml.data.name>",
ignore.flagged.attributes = TRUE,
drop.levels = TRUE,
verbosity = NULL
)
Arguments
obj |
[ |
measures |
[ |
mlr.task.id |
[ |
ignore.flagged.attributes |
[ |
drop.levels |
[ |
verbosity |
[ |
Value
[list] A list with the following objects:
See Also
Other task-related functions:
deleteOMLObject()
,
getOMLTask()
,
listOMLTaskTypes()
,
listOMLTasks()
,
makeOMLTask()
,
tagOMLObject()
Examples
# \dontrun{
# library("mlr")
# vinnieOML = getOMLTask(task.id = 4845)
# vinnieMlr = convertOMLTaskToMlr(vinnieOML)
# }
Delete an OpenML object.
Description
This will delete one of your uploaded datasets, tasks, flows or runs. Note that you can only delete the objects you uploaded.
Usage
deleteOMLObject(
id,
object = c("data", "task", "flow", "run", "study"),
verbosity = NULL
)
Arguments
id |
[ |
object |
[ |
verbosity |
[ |
See Also
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
Other task-related functions:
convertOMLTaskToMlr()
,
getOMLTask()
,
listOMLTaskTypes()
,
listOMLTasks()
,
makeOMLTask()
,
tagOMLObject()
Other flow-related functions:
convertOMLFlowToMlr()
,
getOMLFlow()
,
listOMLFlows()
,
makeOMLFlowParameter()
,
makeOMLFlow()
,
tagOMLObject()
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRunParameter()
,
makeOMLRun()
,
tagOMLObject()
,
uploadOMLRun()
Perform an API call to the OpenML server.
Description
The function always returns the XML file content provided by the server.
Usage
doAPICall(
api.call,
id = NULL,
url.args = list(),
post.args = list(),
file = NULL,
verbosity = NULL,
method,
...
)
Arguments
api.call |
[ |
id |
[ |
url.args |
[ |
post.args |
[ |
file |
[ |
verbosity |
[ |
method |
[ |
... |
Another possibility to pass key-value pairs for the HTTP request query. Arguments passed via ... have a higher priority. |
Value
[character(1)
]
Unparsed content of the returned XML file.
Download an OpenML Object.
Description
Download all files that refer to data, task, flow or run and returns the corresponding parsed XML.
Usage
downloadOMLObject(
id,
object = c("data", "task", "flow", "run"),
overwrite = FALSE,
cache.only = FALSE,
only.xml = FALSE,
verbosity = NULL
)
Arguments
id |
[ |
object |
[ |
overwrite |
[ |
cache.only |
[ |
only.xml |
[ |
verbosity |
[ |
Value
[list]
Extract IDs of a OMLStudy object
Description
Extracts either all data.id
s, task.id
s, flow.id
s or run.id
s from an OMLStudy
object.
Usage
extractOMLStudyIds(object, type, chunk.size = 400)
Arguments
object |
[ |
type |
[ |
chunk.size |
[ |
Value
[numeric
].
Check status of cached datasets.
Description
The caching mechanism is fine, but sometimes you might want to work on a dataset, which is already cached and has been deactivated in the meanwhile. This function can be used to determine the status of all cached datasets.
Usage
getCachedOMLDataSetStatus(show.warnings = TRUE, ...)
Arguments
show.warnings |
[ |
... |
Arguments passed to |
Value
[data.frame
]
Examples
# \dontrun{
# getCachedOMLDataSetStatus()
# }
Get OpenML configuration.
Description
Returns a list of OpenML configuration settings.
Usage
getOMLConfig()
Value
list
of current configuration variables with class “OMLConfig”.
See Also
Other config:
configuration
,
loadOMLConfig()
,
saveOMLConfig()
,
setOMLConfig()
Examples
getOMLConfig()
Get an OpenML data set.
Description
Given a data set ID, the corresponding OMLDataSet
will be downloaded (if not in cache) and returned.
Note that data splits and other task-related information are not included in
an OMLDataSet
. Tasks can be downloaded with getOMLTask
.
Usage
getOMLDataSet(
data.id = NULL,
data.name = NULL,
data.version = NULL,
cache.only = FALSE,
verbosity = NULL
)
Arguments
data.id |
[ |
data.name |
[ |
data.version |
[ |
cache.only |
[ |
verbosity |
[ |
Value
[OMLDataSet
].
Note
One of data.id
or data.name
must be passed.
See Also
Other downloading functions:
getOMLDataSetQualities()
,
getOMLFlow()
,
getOMLRun()
,
getOMLStudy()
,
getOMLTask()
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
Examples
# \dontrun{
# dat = getOMLDataSet(data.id = 9)
#
# # this object contains the data ($data)
# # and meta information
# str(dat, 1)
# summary(dat$data)
# }
List available OpenML qualities with values for given data set.
Description
The returned data.frame
contains data set quality
“name”s and values “value”.
Usage
getOMLDataSetQualities(data.id, verbosity = NULL, name = NULL)
Arguments
data.id |
[ |
verbosity |
[ |
name |
[ |
Value
[data.frame
].
See Also
Other downloading functions:
getOMLDataSet()
,
getOMLFlow()
,
getOMLRun()
,
getOMLStudy()
,
getOMLTask()
Examples
# \dontrun{
# a = getOMLDataSetQualities(data.id = 9)
# a[a$name == "number.of.missing.values", ]
# getOMLDataSetQualities(data.id = 9, name = "number.of.missing.values")
# }
Download an OpenML flow.
Description
Given an flow id, the corresponding OMLFlow
is
downloaded if not already available in cache.
Usage
getOMLFlow(flow.id, cache.only = FALSE, verbosity = NULL)
Arguments
flow.id |
[ |
cache.only |
[ |
verbosity |
[ |
Value
[OMLFlow
].
See Also
Other downloading functions:
getOMLDataSetQualities()
,
getOMLDataSet()
,
getOMLRun()
,
getOMLStudy()
,
getOMLTask()
Other flow-related functions:
convertOMLFlowToMlr()
,
deleteOMLObject()
,
listOMLFlows()
,
makeOMLFlowParameter()
,
makeOMLFlow()
,
tagOMLObject()
Examples
# \dontrun{
# r_ctree = getOMLFlow(flow.id = 2569)
# weka_bagging = getOMLFlow(flow.id = 2286)
# }
Get an OpenML run.
Description
Given an run id, the corresponding OMLRun
including all server
and user computed metrics is downloaded if not already available in cache.
Usage
getOMLRun(run.id, cache.only = FALSE, only.xml = FALSE, verbosity = NULL)
Arguments
run.id |
[ |
cache.only |
[ |
only.xml |
[ |
verbosity |
[ |
Value
[OMLRun
].
See Also
Other downloading functions:
getOMLDataSetQualities()
,
getOMLDataSet()
,
getOMLFlow()
,
getOMLStudy()
,
getOMLTask()
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
deleteOMLObject()
,
listOMLRuns()
,
makeOMLRunParameter()
,
makeOMLRun()
,
tagOMLObject()
,
uploadOMLRun()
Examples
# \dontrun{
# runs_ctree = listOMLRuns(flow.id = 2569)
# run1 = getOMLRun(run.id = runs_ctree$run.id[1])
# str(run1, 1)
# }
Extract OMLRunParList from run
Description
Extracts the seed information as OMLRunParList
from a OMLRun
.
Usage
getOMLRunParList(run)
Arguments
run |
[ |
Value
[OMLRunParList
].
Extract OMLSeedParList from run
Description
Extracts the seed information as OMLSeedParList
from a OMLRun
.
Usage
getOMLSeedParList(run)
Arguments
run |
[ |
Value
[OMLSeedParList
].
Get OpenML Study information.
Description
A OpenML study is a collection of OpenML objects with a specific tag defined by the user (i.e. "study_X"). If you create a study through the website https://www.openml.org/new/study, you can also specify an alias which can be used to access the study.
Usage
getOMLStudy(study = NULL, verbosity = NULL)
Arguments
study |
[ |
verbosity |
[ |
Value
[OMLStudy
].
Note
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
See Also
Other downloading functions:
getOMLDataSetQualities()
,
getOMLDataSet()
,
getOMLFlow()
,
getOMLRun()
,
getOMLTask()
Get an OpenML task.
Description
Given a task ID, the corresponding OMLTask
will be downloaded
(if not in cache) and returned.
Usage
getOMLTask(task.id, cache.only = FALSE, verbosity = NULL)
Arguments
task.id |
[ |
cache.only |
[ |
verbosity |
[ |
Value
[OMLTask
].
See Also
Other downloading functions:
getOMLDataSetQualities()
,
getOMLDataSet()
,
getOMLFlow()
,
getOMLRun()
,
getOMLStudy()
Other task-related functions:
convertOMLTaskToMlr()
,
deleteOMLObject()
,
listOMLTaskTypes()
,
listOMLTasks()
,
makeOMLTask()
,
tagOMLObject()
Examples
# # Download task and access relevant information to start running experiments
# \dontrun{
# task = getOMLTask(1)
# task
# task$task.type
# task$input$data.set
# head(task$input$data.set$data)
# }
List available OpenML qualities names.
Description
The returned data.frame
contains quality name “name”.
Usage
listOMLDataSetQualities(verbosity = NULL)
Arguments
verbosity |
[ |
Value
[data.frame
].
Note
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
See Also
Other listing functions:
chunkOMLlist()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
Examples
# \dontrun{
# listOMLDataSetQualities()
# }
List the first 5000 OpenML data sets.
Description
The returned data.frame
contains the data set id “data.id”,
the “status” (“active”, “deactivated”, “in_preparation”)
and describing data qualities.
Note that by default only active data sets (due to “status = "active"”) will be returned. Furthermore, the argument “limit = 5000” will limit the number of results to 5000.
Usage
listOMLDataSets(
number.of.instances = NULL,
number.of.features = NULL,
number.of.classes = NULL,
number.of.missing.values = NULL,
tag = NULL,
data.name = NULL,
limit = 5000,
offset = NULL,
status = "active",
verbosity = NULL
)
Arguments
number.of.instances |
[ |
number.of.features |
[ |
number.of.classes |
[ |
number.of.missing.values |
[ |
tag |
[ |
data.name |
[ |
limit |
[ |
offset |
[ |
status |
[ |
verbosity |
[ |
Value
[data.frame
].
Note
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
See Also
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
getOMLDataSet()
,
tagOMLObject()
,
uploadOMLDataSet()
Examples
# \dontrun{
# datasets = listOMLDataSets()
# tail(datasets)
# }
List available estimation procedures.
Description
The returned data.frame
contains the est.id
and the corresponding
name of the estimation procedure.
Usage
listOMLEstimationProcedures(verbosity = NULL)
Arguments
verbosity |
[ |
Value
[data.frame
].
Note
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
See Also
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
Examples
# \dontrun{
# listOMLEstimationProcedures()
# }
List available OpenML evaluation measures.
Description
The names of all evaluation measures which are used in at least one run are returned
in a data.frame
.
Usage
listOMLEvaluationMeasures(verbosity = NULL)
Arguments
verbosity |
[ |
Value
[data.frame
].
Note
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
See Also
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
Examples
# \dontrun{
# listOMLEvaluationMeasures()
# }
List all registered OpenML flows.
Description
The returned data.frame
contains the flow id “fid”,
the flow name (“full.name” and “name”), version information
(“version” and “external.version”) and the uploader (“uploader”)
of all registered OpenML flows.
Usage
listOMLFlows(tag = NULL, limit = NULL, offset = NULL, verbosity = NULL)
Arguments
tag |
[ |
limit |
[ |
offset |
[ |
verbosity |
[ |
Value
[data.frame
].
Note
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
See Also
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
Other flow-related functions:
convertOMLFlowToMlr()
,
deleteOMLObject()
,
getOMLFlow()
,
makeOMLFlowParameter()
,
makeOMLFlow()
,
tagOMLObject()
Examples
# \dontrun{
# flows = listOMLFlows()
# tail(flows)
# }
List run results of a task.
Description
Retrieves all run results for task(s) (task.id
), flow(s) (flow.id
)
run(s) (run.id
) or uploaders(s) (uploader.id
and returns a data.frame
.
Each row contains, among others, the run id “rid”. Alternatively the
function can be passed a single tag
to list only runs with the corresponding
tag associated.
Usage
listOMLRunEvaluations(
task.id = NULL,
flow.id = NULL,
run.id = NULL,
uploader.id = NULL,
tag = NULL,
limit = NULL,
offset = NULL,
verbosity = NULL,
evaluation.measure = NULL,
show.array.measures = FALSE,
extend.flow.name = TRUE
)
Arguments
task.id |
[ |
flow.id |
[ |
run.id |
[ |
uploader.id |
[ |
tag |
[ |
limit |
[ |
offset |
[ |
verbosity |
[ |
evaluation.measure |
[ |
show.array.measures |
[ |
extend.flow.name |
[ |
Value
[data.frame
].
Note
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
Examples
# \dontrun{
# # get run results of task 6 (as many rows as runs for this task)
# rev_tid6 = listOMLRunEvaluations(task.id = 6L)
# str(rev_tid6)
#
# # get run results of run 8 (one row)
# rev_rid8 = listOMLRunEvaluations(run.id = 8)
# str(rev_rid8)
# }
List the first 5000 OpenML runs.
Description
This function returns information on all OpenML runs that match certain
task.id
(s), run.id
(s), flow ID flow.id
and/or
uploader.id
(s). Alternatively the function can be passed a single
tag
to list only runs with the corresponding tag associated.
Note that by default only the first 5000 runs will be returned (due to the argument “limit = 5000”).
Usage
listOMLRuns(
task.id = NULL,
flow.id = NULL,
run.id = NULL,
uploader.id = NULL,
tag = NULL,
limit = 5000,
offset = NULL,
verbosity = NULL
)
Arguments
task.id |
[ |
flow.id |
[ |
run.id |
[ |
uploader.id |
[ |
tag |
[ |
limit |
[ |
offset |
[ |
verbosity |
[ |
Value
[data.frame
].
Note
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
See Also
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
makeOMLRunParameter()
,
makeOMLRun()
,
tagOMLObject()
,
uploadOMLRun()
Examples
# \dontrun{
# runs_ctree = listOMLRuns(flow.id = 2569)
# head(runs_ctree)
# }
List hyperparameter settings
Description
Each run has a setup.id
, i.e. an ID for the hyperparameter settings of the flow that produced the run.
This function allows the listing of hyperparameter settings.
Usage
listOMLSetup(
setup.id = NULL,
flow.id = NULL,
limit = 1000,
offset = NULL,
verbosity = NULL
)
Arguments
setup.id |
[ |
flow.id |
[ |
limit |
[ |
offset |
[ |
verbosity |
[ |
Value
[data.frame
].
Note
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
See Also
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
Examples
# \dontrun{
# listOMLSetup(limit = 1)
# }
list OpenML Studies.
Description
Retrives a list of available studies.
Usage
listOMLStudies(
main.entity.type = NULL,
status = "all",
uploader.id = NULL,
limit = NULL,
offset = NULL,
verbosity = NULL
)
Arguments
main.entity.type |
[ |
status |
[ |
uploader.id |
[ |
limit |
[ |
offset |
[ |
verbosity |
[ |
Value
[data.frame
].
Note
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
See Also
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLTaskTypes()
,
listOMLTasks()
List available OpenML task types.
Description
The returned data.frame
contains the type id
and the character
name of the OpenML task type.
Usage
listOMLTaskTypes(verbosity = NULL)
Arguments
verbosity |
[ |
Value
[data.frame
].
Note
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
See Also
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTasks()
Other task-related functions:
convertOMLTaskToMlr()
,
deleteOMLObject()
,
getOMLTask()
,
listOMLTasks()
,
makeOMLTask()
,
tagOMLObject()
Examples
# \dontrun{
# listOMLTaskTypes()
# }
List the first 5000 OpenML tasks.
Description
The returned data.frame
contains the task_id
, the data set id data.id
,
the status
and some describing data qualities.
Note that by default only the first 5000 data sets will be returned (due to the argument “limit = 5000”).
Usage
listOMLTasks(
task.type = NULL,
estimation.procedure = NULL,
evaluation.measures = NULL,
number.of.instances = NULL,
number.of.features = NULL,
number.of.classes = NULL,
number.of.missing.values = NULL,
tag = NULL,
data.name = NULL,
data.tag = NULL,
limit = 5000,
offset = NULL,
status = "active",
verbosity = NULL
)
Arguments
task.type |
[ |
estimation.procedure |
[ |
evaluation.measures |
[ |
number.of.instances |
[ |
number.of.features |
[ |
number.of.classes |
[ |
number.of.missing.values |
[ |
tag |
[ |
data.name |
[ |
data.tag |
[ |
limit |
[ |
offset |
[ |
status |
[ |
verbosity |
[ |
Value
[data.frame
].
Note
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
See Also
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
Other task-related functions:
convertOMLTaskToMlr()
,
deleteOMLObject()
,
getOMLTask()
,
listOMLTaskTypes()
,
makeOMLTask()
,
tagOMLObject()
Examples
# \dontrun{
# tasks = listOMLTasks()
# head(tasks)
# }
Load OpenML configuration.
Description
Loads the OpenML config file from the disk and overwrites the current OpenML config. If there is no API key in the configuration file, the key is retrieved from the environment variable “OPENMLAPIKEY” (if defined).
Usage
loadOMLConfig(path = "~/.openml/config", assign = TRUE)
Arguments
path |
[ |
assign |
[ |
Value
list
of current configuration variables with class “OMLConfig”.
See Also
Other config:
configuration
,
getOMLConfig()
,
saveOMLConfig()
,
setOMLConfig()
Examples
# # if assign = FALSE nothing is changed
# # usually one would want assign = TRUE
# \dontrun{
# loadOMLConfig(assign = FALSE)
# }
Construct OMLEstimationProcedure.
Description
Constructs an estimation procedure.
Usage
makeOMLEstimationProcedure(
type,
data.splits.url = NA_character_,
data.splits = NULL,
parameters = NULL
)
Arguments
type |
[ |
data.splits.url |
[ |
data.splits |
[ |
parameters |
[ |
Value
[OMLEstimationProcedure
]
Construct OMLFlow.
Description
More details about the elements of a OMLFlow
can be found in the
documentation.
Usage
makeOMLFlow(
flow.id = NA_integer_,
uploader = NA_integer_,
name,
version = NA_character_,
external.version = NA_character_,
description,
creator = NA_character_,
contributor = NA_character_,
upload.date = NA_character_,
licence = NA_character_,
language = "English",
full.description = NA_character_,
installation.notes = NA_character_,
dependencies = NA_character_,
bibliographical.reference = NULL,
implements = NA_character_,
parameters = NULL,
components = NULL,
qualities = NULL,
tags = NA_character_,
source.url = NA_character_,
binary.url = NA_character_,
source.format = NA_character_,
binary.format = NA_character_,
source.md5 = NA_character_,
binary.md5 = NA_character_,
source.path = NA_character_,
binary.path = NA_character_,
object = NULL
)
Arguments
flow.id |
[ |
uploader |
[ |
name |
[ |
version |
[ |
external.version |
[ |
description |
[ |
creator |
[ |
contributor |
[ |
upload.date |
[ |
licence |
[ |
language |
[ |
full.description |
[ |
installation.notes |
[ |
dependencies |
[ |
bibliographical.reference |
[ |
implements |
[ |
parameters |
[ |
components |
[ |
qualities |
[ |
tags |
[ |
source.url |
[ |
binary.url |
[ |
source.format |
[ |
binary.format |
[ |
source.md5 |
[ |
binary.md5 |
[ |
source.path |
[ |
binary.path |
[ |
object |
[ |
See Also
Other flow-related functions:
convertOMLFlowToMlr()
,
deleteOMLObject()
,
getOMLFlow()
,
listOMLFlows()
,
makeOMLFlowParameter()
,
tagOMLObject()
Construct OMLFlowParameter.
Description
Construct OMLFlowParameter.
Usage
makeOMLFlowParameter(
name,
data.type = NA_character_,
default.value = NA_character_,
description = NA_character_,
recommended.range = NA_character_
)
Arguments
name |
[ |
data.type |
[ |
default.value |
[ |
description |
[ |
recommended.range |
[ |
See Also
Other flow-related functions:
convertOMLFlowToMlr()
,
deleteOMLObject()
,
getOMLFlow()
,
listOMLFlows()
,
makeOMLFlow()
,
tagOMLObject()
Construct OMLRun.
Description
More details about the elements of a OMLRun
can be found in the
documentation.
Usage
makeOMLRun(
run.id = NA_integer_,
uploader = NA_integer_,
uploader.name = NA_character_,
task.id,
task.type = NA_character_,
task.evaluation.measure = NA_character_,
flow.id = NA_integer_,
flow.name = NA_character_,
setup.id = NA_integer_,
setup.string = NA_character_,
error.message = NA_character_,
parameter.setting = list(),
tags = NA_character_,
predictions = NULL,
input.data = makeOMLIOData(),
output.data = makeOMLIOData()
)
Arguments
run.id |
[ |
uploader |
[ |
uploader.name |
[ |
task.id |
[ |
task.type |
[ |
task.evaluation.measure |
[ |
flow.id |
[ |
flow.name |
[ |
setup.id |
[ |
setup.string |
[ |
error.message |
[ |
parameter.setting |
[ |
tags |
[ |
predictions |
[ |
input.data |
[ |
output.data |
[ |
See Also
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRunParameter()
,
tagOMLObject()
,
uploadOMLRun()
Construct OMLRunParList.
Description
Generate a list of OpenML run parameter settings for a given mlr learner.
Usage
makeOMLRunParList(mlr.lrn, component = NA_character_)
Arguments
mlr.lrn |
[ |
component |
[ |
Value
A OMLRunParList
which is a list of OMLRunParameters
.
Construct OMLRunParameter.
Description
Construct a run parameter object for a run.
Usage
makeOMLRunParameter(name, value, component = NA_character_)
Arguments
name |
[ |
value |
[ |
component |
[ |
See Also
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRun()
,
tagOMLObject()
,
uploadOMLRun()
Construct OMLSeedParList
Description
Generate a list of OpenML seed parameter settings for a given seed.
Usage
makeOMLSeedParList(seed, prefix = "openml")
Arguments
seed |
[ |
prefix |
[ |
Value
A OMLSeedParList
which is a list of OMLRunParameters
that provide only information about the seed.
OMLStudy.
Description
If you create a study through the website https://www.openml.org/new/study, you can also specify an alias which can be used to access the study. To see a full list of all elements, please see the documentation.
Usage
makeOMLStudy(
alias,
name,
description,
data.id = NULL,
task.id = NULL,
flow.id = NULL,
run.id = NULL
)
Arguments
alias |
[ |
name |
[ |
description |
[ |
data.id |
[ |
task.id |
[ |
flow.id |
[ |
run.id |
[ |
Value
[OMLStudy
].
See Also
Other uploading functions:
uploadOMLDataSet()
,
uploadOMLFlow()
,
uploadOMLRun()
,
uploadOMLStudy()
Construct OMLTask.
Description
More details about the elements of a OMLTask
can be found in the
documentation.
Usage
makeOMLTask(
task.id,
task.type,
input,
parameters = list(),
output,
tags = NA_character_
)
Arguments
task.id |
[ |
task.type |
[ |
input |
[ |
parameters |
[ |
output |
[ |
tags |
[ |
See Also
Other task-related functions:
convertOMLTaskToMlr()
,
deleteOMLObject()
,
getOMLTask()
,
listOMLTaskTypes()
,
listOMLTasks()
,
tagOMLObject()
Download a bunch of OpenML objects to cache.
Description
Given a set of OML object ids, the function populates the cache directory by downloading the corresponding objects. This can avoid network access in later experiments, as you can retrieve all objects from the cache on disk. This is of particular interest in highly parallel computations on a cluster with a shared file system.
Usage
populateOMLCache(
data.ids = integer(0L),
task.ids = integer(0L),
flow.ids = integer(0L),
run.ids = integer(0L),
verbosity = NULL,
overwrite = FALSE
)
Arguments
data.ids |
[ |
task.ids |
[ |
flow.ids |
[ |
run.ids |
[ |
verbosity |
[ |
overwrite |
[ |
Value
[invisible(NULL)
]
Reproduce the Run
Description
Uses the ID of the run and tries to reproduce its results by downloading the flow and applying it to the respective task.
Usage
runTaskFlow(
task,
flow,
par.list,
seed = 1,
predict.type = NULL,
verbosity = NULL,
models = TRUE
)
Arguments
task |
[ |
flow |
[ |
par.list |
[ |
seed |
[ |
predict.type |
[character(1)] |
verbosity |
[ |
models |
[ |
Value
[OMLMlrRun
], an OMLRun
.
Run mlr learner on OpenML task.
Description
Run task with a specified learner from mlr and produce predictions. By default, the evaluation measure contained in the task is used.
Usage
runTaskMlr(
task,
learner,
measures = NULL,
verbosity = NULL,
seed = 1,
scimark.vector = NULL,
models = TRUE,
...
)
Arguments
task |
[ |
learner |
[ |
measures |
[ |
verbosity |
[ |
seed |
[ |
scimark.vector |
[ |
models |
[ |
... |
[any] |
Value
[list
] Named list with the following components:
See Also
Examples
# \dontrun{
# library(mlr)
# ## run a single flow (learner) on a single task
# task = getOMLTask(57)
# lrn = makeLearner("classif.rpart")
# res = runTaskMlr(task, lrn)
# ## the result "res" is a list, storing information on the actual "run", the
# ## corresponding benchmark result "bmr" and the applied "flow"
# }
Saves a list of OpenML configuration settings to file.
Description
The new configuration is automatically assigned via
setOMLConfig
if all checks pass. If you don't set a certain option,
package defaults will be inserted into the file.
Usage
saveOMLConfig(
server = NULL,
verbosity = NULL,
apikey = NULL,
cachedir = NULL,
arff.reader = NULL,
confirm.upload = NULL,
overwrite = FALSE
)
Arguments
server |
[ |
verbosity |
[ |
apikey |
[ |
cachedir |
[ |
arff.reader |
[ |
confirm.upload |
[ |
overwrite |
[ |
See Also
Other config:
configuration
,
getOMLConfig()
,
loadOMLConfig()
,
setOMLConfig()
Settter for configuration settings.
Description
Set and overwrite configuration settings.
Usage
setOMLConfig(
server = NULL,
verbosity = NULL,
apikey = NULL,
cachedir = NULL,
arff.reader = NULL,
confirm.upload = NULL
)
Arguments
server |
[ |
verbosity |
[ |
apikey |
[ |
cachedir |
[ |
arff.reader |
[ |
confirm.upload |
[ |
Value
Invisibly returns a list of configuration settings.
See Also
Other config:
configuration
,
getOMLConfig()
,
loadOMLConfig()
,
saveOMLConfig()
Tagging of OpenML objects
Description
Add or remove a specific tag to a OpenML data, task, flow or run.
Usage
tagOMLObject(
ids,
object = c("data", "task", "flow", "run"),
tags,
verbosity = NULL
)
untagOMLObject(
ids,
object = c("data", "task", "flow", "run"),
tags,
verbosity = NULL
)
Arguments
ids |
[ |
object |
[ |
tags |
[ |
verbosity |
[ |
See Also
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
uploadOMLDataSet()
Other task-related functions:
convertOMLTaskToMlr()
,
deleteOMLObject()
,
getOMLTask()
,
listOMLTaskTypes()
,
listOMLTasks()
,
makeOMLTask()
Other flow-related functions:
convertOMLFlowToMlr()
,
deleteOMLObject()
,
getOMLFlow()
,
listOMLFlows()
,
makeOMLFlowParameter()
,
makeOMLFlow()
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRunParameter()
,
makeOMLRun()
,
uploadOMLRun()
Upload a data set to the OpenML server.
Description
Share a data set by uploading it to the OpenML server.
Usage
uploadOMLDataSet(
x,
tags = NULL,
description = NULL,
confirm.upload = NULL,
verbosity = NULL
)
Arguments
x |
[ |
tags |
[ |
description |
[ |
confirm.upload |
[ |
verbosity |
[ |
Value
[invisible(numeric(1))
].
The ID of the data (data.id
).
Note
This function will reset the cache of listOMLDataSets
on success.
See Also
Other uploading functions:
makeOMLStudy()
,
uploadOMLFlow()
,
uploadOMLRun()
,
uploadOMLStudy()
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
Upload an OpenML.
Description
Share a flow by uploading it to the OpenML server.
Usage
uploadOMLFlow(
x,
tags = NULL,
verbosity = NULL,
confirm.upload = NULL,
sourcefile = NULL,
binaryfile = NULL
)
Arguments
x |
|
tags |
[ |
verbosity |
[ |
confirm.upload |
[ |
sourcefile |
[ |
binaryfile |
[ |
Value
[invisible(numeric)
].
The ID of the flow (flow.id
).
Note
This function will reset the cache of listOMLFlows
on success.
See Also
Other uploading functions:
makeOMLStudy()
,
uploadOMLDataSet()
,
uploadOMLRun()
,
uploadOMLStudy()
Upload an OpenML run.
Description
Share a run of a flow on a given OpenML task by uploading it to the OpenML server.
Usage
uploadOMLRun(
run,
upload.bmr = FALSE,
tags = NULL,
confirm.upload = NULL,
verbosity = NULL,
...
)
Arguments
run |
[ |
upload.bmr |
[ |
tags |
[ |
confirm.upload |
[ |
verbosity |
[ |
... |
Not used. |
Value
[invisible(numeric(1))
].
The run ID.
Note
This function will reset the cache of listOMLRuns
and
listOMLRunEvaluations
on success.
By default you will be asked to confirm the upload. You can deactivate the need for confirmation by setting “confirm.upload = TRUE” via setOMLConfig or set the corresponding argument each time you call the function.
See Also
Other uploading functions:
makeOMLStudy()
,
uploadOMLDataSet()
,
uploadOMLFlow()
,
uploadOMLStudy()
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRunParameter()
,
makeOMLRun()
,
tagOMLObject()
Upload OpenML Study information.
Description
A OpenML study is a collection of OpenML objects. If you create a study through the website https://www.openml.org/new/study, you can also specify an alias which can be used to access the study.
Usage
uploadOMLStudy(x, confirm.upload = NULL, verbosity = NULL)
Arguments
x |
[[ |
confirm.upload |
[ |
verbosity |
[ |
Value
[OMLStudy
].
See Also
Other uploading functions:
makeOMLStudy()
,
uploadOMLDataSet()
,
uploadOMLFlow()
,
uploadOMLRun()
Upload a task to the OpenML server.
Description
Share a task by uploading it to the OpenML server.
Usage
uploadOMLTask(
task.type,
data.id,
target.feature,
estimation.procedure,
evaluation.measure = NULL,
tags = NULL,
description = NULL,
confirm.upload = NULL,
verbosity = NULL
)
Arguments
task.type |
[character(1)] |
data.id |
[ |
target.feature |
[character(1)] |
estimation.procedure |
[character(1)] |
evaluation.measure |
[character(1)] |
tags |
[ |
description |
[ |
confirm.upload |
[ |
verbosity |
[ |