Type: Package
Title: 'KorAP' Web Service Client Package
Version: 1.1.0
Description: A client package that makes the 'KorAP' web service API accessible from R. The corpus analysis platform 'KorAP' has been developed as a scientific tool to make potentially large, stratified and multiply annotated corpora, such as the 'German Reference Corpus DeReKo' or the 'Corpus of the Contemporary Romanian Language CoRoLa', accessible for linguists to let them verify hypotheses and to find interesting patterns in real language use. The 'RKorAPClient' package provides access to 'KorAP' and the corpora behind it for user-created R code, as a programmatic alternative to the 'KorAP' web user-interface. You can learn more about 'KorAP' and use it directly on 'DeReKo' at https://korap.ids-mannheim.de/.
Depends: R (≥ 4.1.0)
Language: en-US
License: BSD_2_clause + file LICENSE
URL: https://github.com/KorAP/RKorAPClient/, https://korap.ids-mannheim.de/, https://www.ids-mannheim.de/digspra/kl/projekte/korap
BugReports: https://github.com/KorAP/RKorAPClient/issues
Encoding: UTF-8
RoxygenNote: 7.3.2
Imports: R.cache, broom, ggplot2, tibble, magrittr, tidyr, dplyr, lubridate, highcharter, jsonlite, keyring, utils, httr2, curl, methods, PTXQC, purrr, stringr, urltools
Suggests: lifecycle, testthat, htmlwidgets, rmarkdown, shiny, vcd, kableExtra, knitr, purrrlyr, raster, tidyverse
Collate: 'logging.R' 'KorAPConnection.R' 'KorAPCorpusStats.R' 'RKorAPClient-package.R' 'KorAPQuery.R' 'association-scores.R' 'ci.R' 'collocationAnalysis.R' 'collocationScoreQuery.R' 'hc_add_onclick_korap_search.R' 'hc_freq_by_year_ci.R' 'misc.R' 'reexports.R' 'textMetadata.R'
NeedsCompilation: no
Packaged: 2025-06-26 15:12:25 UTC; kupietz
Author: Marc Kupietz [aut, cre], Nils Diewald [ctb], Leibniz Institute for the German Language [cph, fnd]
Maintainer: Marc Kupietz <kupietz@ids-mannheim.de>
Repository: CRAN
Date/Publication: 2025-06-26 16:10:02 UTC

R Client for KorAP Corpus Analysis Platform

Description

RKorAPClient provides programmatic access to KorAP corpus analysis platform instances, enabling corpus linguistic research on large corpora like DeReKo, CoRoLa, DeLiKo@DNB.

Main Functions

Connection

KorAPConnection(), auth(), persistAccessToken()

Search

corpusQuery(), fetchAll(), fetchNext()

Analysis

corpusStats(), frequencyQuery(), collocationAnalysis()

Quick Start

library(RKorAPClient)
# Connect and search
kcon <- KorAPConnection()
query <- corpusQuery(kcon, "Ameisenplage")
results <- fetchAll(query)

# Access results
results@collectedMatches
results@totalResults

Common Workflows

Basic Search:

kcon <- KorAPConnection()
kcon |> corpusQuery("search term") |> fetchAll()

Frequency Analysis:

frequencyQuery(kcon, c("term1", "term2"), vc="pubDate in 2020")

Corpus Statistics:

corpusStats(kcon, vc="textType=Zeitung", as.df=TRUE)

Author(s)

Maintainer: Marc Kupietz kupietz@ids-mannheim.de

Other contributors:

References

Kupietz, Marc / Diewald, Nils / Margaretha, Eliza (2020): RKorAPClient: An R package for accessing the German Reference Corpus DeReKo via KorAP. In: Calzolari, Nicoletta, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis (eds.): Proceedings of The 12th Language Resources and Evaluation Conference (LREC 2020) Marseille: European Language Resources Association (ELRA), 7017-7023. http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.867.pdf

See Also

Useful links:


Connect to KorAP Server

Description

KorAPConnection() creates a connection to a KorAP server for corpus queries. This is your starting point for all corpus analysis tasks.

Arguments

KorAPUrl

URL of the web user interface of the KorAP server instance you want to access. Defaults to the environment variable KORAP_URL if set and to the IDS Mannheim KorAP main instance to query DeReKo, otherwise. In order to access the KorAP instance at the German National Library (DNB) to query the contemporary fiction corpus DeLiKo@DNB, for example, set KorAPUrl to https://korap.dnb.de/.

apiVersion

which version of KorAP's API you want to connect to. Defaults to "v1.0".

apiUrl

URL of the KorAP web service. If not provided, it will be constructed from KorAPUrl and apiVersion.

accessToken

OAuth2 access token. For queries on corpus parts with restricted access (e.g. textual queries on IPR protected data), you need to authorize your application with an access token. You can obtain an access token in the OAuth settings of your KorAP web interface.

More details are explained in the authorization section of the RKorAPClient Readme on GitHub.

To use authorization based on an access token in subsequent queries, initialize your KorAP connection with:

kco <- KorAPConnection(accessToken="<access token>")

In order to make the API token persistent for the currently used KorAPUrl (you can have one token per KorAPUrl / KorAP server instance), use:

persistAccessToken(kco)

This will store it in your keyring using the keyring::keyring-package. Subsequent KorAPConnection() calls will then automatically retrieve the token from your keying. To stop using a persisted token, call clearAccessToken(kco). Please note that for DeReKo, authorized queries will behave differently inside and outside the IDS, because of the special license situation. This concerns also cached results which do not take into account from where a request was issued. If you experience problems or unexpected results, please try kco <- KorAPConnection(cache=FALSE) or use clearCache() to clear the cache completely.

An alternative to using an access token is to use a browser-based oauth2 workflow to obtain an access token. This can be done with the auth() method.

oauthClient

OAuth2 client object.

oauthScope

OAuth2 scope. Defaults to "search match_info".

authorizationSupported

logical that indicates if authorization is supported/necessary for the current KorAP instance. Automatically set during initialization.

userAgent

user agent string. Defaults to "R-KorAP-Client".

timeout

timeout in seconds for API requests (this does not influence server internal timeouts). Defaults to 240 seconds.

verbose

logical that decides whether following operations will default to be verbose. Defaults to FALSE.

cache

logical that decides if API calls are cached locally. You can clear the cache with clearCache(). Defaults to TRUE.

Details

Use KorAPConnection() to connect, then corpusQuery() to search, and fetchAll() to retrieve results. For authorized access to restricted corpora, use auth() or provide an accessToken.

The KorAPConnection object contains various configuration slots for advanced users: KorAPUrl (server URL), apiVersion, accessToken (OAuth2 token), timeout (request timeout), verbose (logging), cache (local caching), and other technical parameters. Most users can ignore these implementation details.

Value

KorAPConnection() object that can be used e.g. with corpusQuery()

Basic Workflow

# Connect to KorAP
kcon <- KorAPConnection()

# Search for a term
query <- corpusQuery(kcon, "Ameisenplage")

# Get all results
results <- fetchAll(query)

Authorization

For access to restricted corpora, authorize your connection:

kcon <- KorAPConnection() |> auth()

See Also

Other initialization functions: auth,KorAPConnection-method, clearAccessToken,KorAPConnection-method, persistAccessToken,KorAPConnection-method


KorAPCorpusStats class (internal)

Description

Internal class for corpus statistics storage. Users work with corpusStats() function instead.

Usage

## S4 method for signature 'KorAPCorpusStats'
show(object)

Arguments

object

KorAPCorpusStats object


KorAPQuery class (internal)

Description

Internal class for query state management. Users work with corpusQuery(), fetchAll(), and fetchNext() instead.

Usage

buildWebUIRequestUrlFromString(KorAPUrl, query, vc = "", ql = "poliqarp")

buildWebUIRequestUrl(
  kco,
  query = if (missing(KorAPUrl)) {
    
    stop("At least one of the parameters query and KorAPUrl must be specified.", call. =
    FALSE)
 } else {
     httr2::url_parse(KorAPUrl)$query$q
 },
  vc = if (missing(KorAPUrl)) "" else httr2::url_parse(KorAPUrl)$query$cq,
  KorAPUrl,
  ql = if (missing(KorAPUrl)) "poliqarp" else httr2::url_parse(KorAPUrl)$query$ql
)

## S3 method for class 'KorAPQuery'
format(x, ...)

## S4 method for signature 'KorAPQuery'
show(object)

Arguments

x

KorAPQuery object

...

further arguments passed to or from other methods

object

KorAPQuery object


Internal API call method

Description

Internal API call method

Usage

## S4 method for signature 'KorAPConnection'
apiCall(
  kco,
  url,
  json = TRUE,
  getHeaders = FALSE,
  cache = kco@cache,
  timeout = kco@timeout
)

Arguments

kco

KorAPConnection object

url

request url

json

logical that determines if JSON result is expected

getHeaders

logical that determines if headers and content should be returned (as a list)


Association score functions

Description

Functions to calculate different collocation association scores between a node (target word) and words in a window around the it. The functions are primarily used by collocationScoreQuery().

pmi: pointwise mutual information

mi2: pointwise mutual information squared (Daille 1994), also referred to as mutual dependency (Thanopoulos et al. 2002)

mi3: pointwise mutual information cubed (Daille 1994), also referred to as log-frequency biased mutual dependency) (Thanopoulos et al. 2002)

logDice: log-Dice coefficient, a heuristic measure that is popular in lexicography (Rychlý 2008)

ll: log-likelihood (Dunning 1993) using Stefan Evert's (2004) simplified implementation

Usage

defaultAssociationScoreFunctions()

pmi(O1, O2, O, N, E, window_size)

mi2(O1, O2, O, N, E, window_size)

mi3(O1, O2, O, N, E, window_size)

logDice(O1, O2, O, N, E, window_size)

ll(O1, O2, O, N, E, window_size)

Arguments

O1

observed absolute frequency of node

O2

observed absolute frequency of collocate

O

observed absolute frequency of collocation

N

corpus size

E

expected absolute frequency of collocation (already adjusted to window size)

window_size

total window size around node (left neighbour count + right neighbour count)

Value

         association score

References

Daille, B. (1994): Approche mixte pour l’extraction automatique de terminologie: statistiques lexicales et filtres linguistiques. PhD thesis, Université Paris 7.

Thanopoulos, A., Fakotakis, N., Kokkinakis, G. (2002): Comparative evaluation of collocation extraction metrics. In: Proc. of LREC 2002: 620–625.

Rychlý, Pavel (2008): A lexicographer-friendly association score. In Proceedings of Recent Advances in Slavonic Natural Language Processing, RASLAN, 6–9. https://www.fi.muni.cz/usr/sojka/download/raslan2008/13.pdf.

Dunning, T. (1993): Accurate methods for the statistics of surprise and coincidence. Comput. Linguist. 19, 1 (March 1993), 61-74.

Evert, Stefan (2004): The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD dissertation, IMS, University of Stuttgart. Published in 2005, URN urn:nbn:de:bsz:93-opus-23714. Free PDF available from https://purl.org/stefan.evert/PUB/Evert2004phd.pdf

See Also

Other collocation analysis functions: collocationAnalysis,KorAPConnection-method, collocationScoreQuery,KorAPConnection-method, synsemanticStopwords()

Examples

## Not run: 

KorAPConnection(verbose = TRUE) %>%
collocationScoreQuery("Perlen", c("verziertes", "Säue"),
  scoreFunctions = append(defaultAssociationScoreFunctions(),
     list(localMI = function(O1, O2, O, N, E, window_size) {
                       O * log2(O/E)
                    })))

## End(Not run)


Authorize RKorAPClient

Description

Authorize RKorAPClient to make KorAP queries and download results on behalf of the user.

Usage

## S4 method for signature 'KorAPConnection'
auth(
  kco,
  app_id = generic_kor_app_id,
  app_secret = NULL,
  scope = kco@oauthScope
)

Arguments

kco

KorAPConnection object

app_id

OAuth2 application id. Defaults to the generic KorAP client application id.

app_secret

OAuth2 application secret. Used with confidential client applications. Defaults to NULL.

scope

OAuth2 scope. Defaults to "search match_info".

Value

KorAPConnection object with access token set in ⁠@accessToken⁠.

See Also

persistAccessToken(), clearAccessToken()

Other initialization functions: KorAPConnection-class, clearAccessToken,KorAPConnection-method, persistAccessToken,KorAPConnection-method

Examples

## Not run: 
kco <- KorAPConnection(verbose = TRUE) %>% auth()
df <- collocationAnalysis(kco, "focus([marmot/p=ADJA] {Ameisenplage})",
  leftContextSize = 1, rightContextSize = 0
)

## End(Not run)


Calculate and format ETA for batch operations

Description

Helper function to calculate estimated time of arrival based on elapsed time and progress through a batch operation.

Usage

calculate_eta(current_item, total_items, start_time)

Arguments

current_item

current item number (1-based)

total_items

total number of items to process

start_time

POSIXct start time of the operation

Value

character string with formatted ETA and completion time or empty string if not calculable


Calculate sophisticated ETA using median of recent non-cached times

Description

Advanced ETA calculation that excludes cached responses and uses median of recent timing data for more stable estimates. This is particularly useful for operations where some responses may be cached and much faster.

Usage

calculate_sophisticated_eta(
  individual_times,
  current_item,
  total_items,
  cache_threshold = 0.1,
  window_size = 5
)

Arguments

individual_times

numeric vector of individual item processing times

current_item

current item number (1-based)

total_items

total number of items to process

cache_threshold

minimum time in seconds to consider as non-cached (default: 0.1)

window_size

number of recent non-cached times to use for median calculation (default: 5)

Value

list with eta_seconds, estimated_completion_time, and is_cached flag


Add confidence interval and relative frequency variables

Description

Using prop.test(), ci adds three columns to a data frame:

  1. relative frequency (f)

  2. lower bound of a confidence interval (ci.low)

  3. upper bound of a confidence interval

Convenience function for converting frequency tables to instances per million.

Convenience function for converting frequency tables of alternative variants (generated with as.alternatives=TRUE) to percent.

Converts a vector of query or vc strings to typically appropriate legend labels by clipping off prefixes and suffixes that are common to all query strings.

Experimental convenience function for plotting typical frequency by year graphs with confidence intervals using ggplot2. Warning: This function may be moved to a new package.

Usage

ci(df, x = totalResults, N = total, conf.level = 0.95)

ipm(df)

percent(df)

queryStringToLabel(data, pubDateOnly = FALSE, excludePubDate = FALSE)

geom_freq_by_year_ci(mapping = aes(ymin = conf.low, ymax = conf.high), ...)

Arguments

df

table returned from frequencyQuery()

x

column with the observed absolute frequency.

N

column with the total frequencies

conf.level

confidence level of the returned confidence interval. Must be a single number between 0 and 1.

data

string or vector of query or vc definition strings

pubDateOnly

discard all but the publication date

excludePubDate

discard publication date constraints

mapping

Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

...

Other arguments passed to geom_ribbon, geom_line, and geom_click_point.

Details

Given a table with columns f, conf.low, and conf.high, ipm ads a ⁠column ipm⁠ und multiplies conf.low and conf.high with 10^6.

Value

original table with additional column ipm and converted columns conf.low and conf.high

original table with converted columns f, conf.low and conf.high

string or vector of strings with clipped off common prefixes and suffixes

See Also

ci is already included in frequencyQuery()

Examples

## Not run: 

library(ggplot2)
kco <- KorAPConnection(verbose=TRUE)
expand_grid(year=2015:2018, alternatives=c("Hate Speech", "Hatespeech")) %>%
  bind_cols(corpusQuery(kco, .$alternatives, sprintf("pubDate in %d", .$year))) %>%
  mutate(total=corpusStats(kco, vc=vc)$tokens) %>%
  ci() %>%
  ggplot(aes(x=year, y=f, fill=query, color=query, ymin=conf.low, ymax=conf.high)) +
    geom_point() + geom_line() + geom_ribbon(alpha=.3)

## End(Not run)
## Not run: 

KorAPConnection() %>% frequencyQuery("Test", paste0("pubDate in ", 2000:2002)) %>% ipm()

## End(Not run)
## Not run: 

KorAPConnection() %>%
    frequencyQuery(c("Tollpatsch", "Tolpatsch"),
    vc=paste0("pubDate in ", 2000:2002),
    as.alternatives = TRUE) %>%
  percent()

## End(Not run)
queryStringToLabel(paste("textType = /Zeit.*/ & pubDate in", c(2010:2019)))
queryStringToLabel(c("[marmot/m=mood:subj]", "[marmot/m=mood:ind]"))
queryStringToLabel(c("wegen dem [tt/p=NN]", "wegen des [tt/p=NN]"))

## Not run: 
library(ggplot2)
kco <- KorAPConnection(verbose=TRUE)

expand_grid(condition = c("textDomain = /Wirtschaft.*/", "textDomain != /Wirtschaft.*/"),
            year = (2005:2011)) %>%
  cbind(frequencyQuery(kco, "[tt/l=Heuschrecke]",
                            paste0(.$condition," & pubDate in ", .$year)))  %>%
  ipm() %>%
  ggplot(aes(year, ipm, fill = condition, color = condition)) +
  geom_freq_by_year_ci()

## End(Not run)

Clear access token from keyring and KorAPConnection object

Description

Clear access token from keyring and KorAPConnection object

Usage

## S4 method for signature 'KorAPConnection'
clearAccessToken(kco)

Arguments

kco

KorAPConnection object

Value

KorAPConnection object with access token set to NULL.

See Also

persistAccessToken()

Other initialization functions: KorAPConnection-class, auth,KorAPConnection-method, persistAccessToken,KorAPConnection-method

Examples

## Not run: 
kco <- KorAPConnection()
kco <- clearAccessToken(kco)

## End(Not run)


Clear local cache

Description

Clears the local cache of API responses for the current RKorAPClient version. Useful when you want to force fresh data retrieval or free up disk space.

Usage

## S4 method for signature 'KorAPConnection'
clearCache(kco)

Arguments

kco

KorAPConnection object

Value

Invisible NULL (function called for side effects)

Examples

## Not run: 
kco <- KorAPConnection()
clearCache(kco)

## End(Not run)


Collocation analysis

Description

Performs a collocation analysis for the given node (or query) in the given virtual corpus.

Usage

## S4 method for signature 'KorAPConnection'
collocationAnalysis(
  kco,
  node,
  vc = "",
  lemmatizeNodeQuery = FALSE,
  minOccur = 5,
  leftContextSize = 5,
  rightContextSize = 5,
  topCollocatesLimit = 200,
  searchHitsSampleLimit = 20000,
  ignoreCollocateCase = FALSE,
  withinSpan = ifelse(exactFrequencies, "base/s=s", ""),
  exactFrequencies = TRUE,
  stopwords = append(RKorAPClient::synsemanticStopwords(), node),
  seed = 7,
  expand = length(vc) != length(node),
  maxRecurse = 0,
  addExamples = FALSE,
  thresholdScore = "logDice",
  threshold = 2,
  localStopwords = c(),
  collocateFilterRegex = "^[:alnum:]+-?[:alnum:]*$",
  ...
)

Arguments

kco

KorAPConnection() object (obtained e.g. from KorAPConnection()

node

target word

vc

string describing the virtual corpus in which the query should be performed. An empty string (default) means the whole corpus, as far as it is license-wise accessible.

lemmatizeNodeQuery

if TRUE, node query will be lemmatized, i.e. ⁠x -> [tt/l=x]⁠

minOccur

minimum absolute number of observed co-occurrences to consider a collocate candidate

leftContextSize

size of the left context window

rightContextSize

size of the right context window

topCollocatesLimit

limit analysis to the n most frequent collocates in the search hits sample

searchHitsSampleLimit

limit the size of the search hits sample

ignoreCollocateCase

logical, set to TRUE if collocate case should be ignored

withinSpan

KorAP span specification (see https://korap.ids-mannheim.de/doc/ql/poliqarp-plus?embedded=true#spans) for collocations to be searched within. Defaults to base/s=s.

exactFrequencies

if FALSE, extrapolate observed co-occurrence frequencies from frequencies in search hits sample, otherwise retrieve exact co-occurrence frequencies

stopwords

vector of stopwords not to be considered as collocates

seed

seed for random page collecting order

expand

if TRUE, node and vc parameters are expanded to all of their combinations

maxRecurse

apply collocation analysis recursively maxRecurse times

addExamples

If TRUE, examples for instances of collocations will be added in a column example. This makes a difference in particular if node is given as a lemma query.

thresholdScore

association score function (see association-score-functions) to use for computing the threshold that is applied for recursive collocation analysis calls

threshold

minimum value of thresholdScore function call to apply collocation analysis recursively

localStopwords

vector of stopwords that will not be considered as collocates in the current function call, but that will not be passed to recursive calls

collocateFilterRegex

allow only collocates matching the regular expression

...

more arguments will be passed to collocationScoreQuery()

Details

The collocation analysis is currently implemented on the client side, as some of the functionality is not yet provided by the KorAP backend. Mainly for this reason it is very slow (several minutes, up to hours), but on the other hand very flexible. You can, for example, perform the analysis in arbitrary virtual corpora, use complex node queries, and look for expression-internal collocates using the focus function (see examples and demo).

To increase speed at the cost of accuracy and possible false negatives, you can decrease searchHitsSampleLimit and/or topCollocatesLimit and/or set exactFrequencies to FALSE.

Note that some outdated non-DeReKo back-ends might not yet support returning tokenized matches (warning issued). In this case, the client library will fall back to client-side tokenization which might be slightly less accurate. This might lead to false negatives and to frequencies that differ from corresponding ones acquired via the web user interface.

Value

Tibble with top collocates, association scores, corresponding URLs for web user interface queries, etc.

See Also

Other collocation analysis functions: association-score-functions, collocationScoreQuery,KorAPConnection-method, synsemanticStopwords()

Examples

## Not run: 

# Find top collocates of "Packung" inside and outside the sports domain.
KorAPConnection(verbose = TRUE) |>
  collocationAnalysis("Packung",
    vc = c("textClass=sport", "textClass!=sport"),
    leftContextSize = 1, rightContextSize = 1, topCollocatesLimit = 20
  ) |>
  dplyr::filter(logDice >= 5)

## End(Not run)

## Not run: 

# Identify the most prominent light verb construction with "in ... setzen".
# Note that, currently, the use of focus function disallows exactFrequencies.
KorAPConnection(verbose = TRUE) |>
  collocationAnalysis("focus(in [tt/p=NN] {[tt/l=setzen]})",
    leftContextSize = 1, rightContextSize = 0, exactFrequencies = FALSE, topCollocatesLimit = 20
  )

## End(Not run)


Query frequencies of a node and a collocate and calculate collocation association scores

Description

Computes various collocation association scores based on frequencyQuery()s for a target word and a collocate.

Usage

## S4 method for signature 'KorAPConnection'
collocationScoreQuery(
  kco,
  node,
  collocate,
  vc = "",
  lemmatizeNodeQuery = FALSE,
  lemmatizeCollocateQuery = FALSE,
  leftContextSize = 5,
  rightContextSize = 5,
  scoreFunctions = defaultAssociationScoreFunctions(),
  smoothingConstant = 0.5,
  observed = NA,
  ignoreCollocateCase = FALSE,
  withinSpan = "base/s=s"
)

Arguments

kco

KorAPConnection() object (obtained e.g. from KorAPConnection()

node

target word

collocate

collocate of target word

vc

string describing the virtual corpus in which the query should be performed. An empty string (default) means the whole corpus, as far as it is license-wise accessible.

lemmatizeNodeQuery

logical, set to TRUE if node query should be lemmatized, i.e. ⁠x -> [tt/l=x]⁠

lemmatizeCollocateQuery

logical, set to TRUE if collocate query should be lemmatized, i.e. ⁠x -> [tt/l=x]⁠

leftContextSize

size of the left context window

rightContextSize

size of the right context window

scoreFunctions

named list of score functions of the form function(O1, O2, O, N, E, window_size), see e.g. pmi

smoothingConstant

smoothing constant will be added to all observed values

observed

if collocation frequencies are already known (or estimated from a sample) they can be passed as a vector here, otherwise: NA

ignoreCollocateCase

logical, set to TRUE if collocate case should be ignored

withinSpan

KorAP span specification (see https://korap.ids-mannheim.de/doc/ql/poliqarp-plus?embedded=true#spans) for collocations to be searched within. Defaults to base/s=s.

Value

tibble with query KorAP web request URL, all observed values and association scores

See Also

Other collocation analysis functions: association-score-functions, collocationAnalysis,KorAPConnection-method, synsemanticStopwords()

Examples

## Not run: 

KorAPConnection(verbose = TRUE) |>
  collocationScoreQuery("Grund", "triftiger")

## End(Not run)

## Not run: 

KorAPConnection(verbose = TRUE) |>
collocationScoreQuery("Grund", c("guter", "triftiger"),
   scoreFunctions = list(localMI = function(O1, O2, O, N, E, window_size) { O * log2(O/E) }) )

## End(Not run)

## Not run: 

library(highcharter)
library(tidyr)
KorAPConnection(verbose = TRUE) |>
  collocationScoreQuery("Team", "agil", vc = paste("pubDate in", c(2014:2018)),
                        lemmatizeNodeQuery = TRUE, lemmatizeCollocateQuery = TRUE) |>
                         pivot_longer(14:last_col(), names_to = "measure", values_to = "score") |>
  hchart(type="spline", hcaes(label, score, group=measure)) |>
  hc_add_onclick_korap_search()

## End(Not run)


Search corpus for query terms

Description

corpusQuery performs a corpus query via a connection to a KorAP-API-server

Usage

## S4 method for signature 'KorAPConnection'
corpusQuery(
  kco,
  query = if (missing(KorAPUrl)) {
    
    stop("At least one of the parameters query and KorAPUrl must be specified.", call. =
    FALSE)
 } else {
     httr2::url_parse(KorAPUrl)$query$q
 },
  vc = if (missing(KorAPUrl)) "" else httr2::url_parse(KorAPUrl)$query$cq,
  KorAPUrl,
  metadataOnly = TRUE,
  ql = if (missing(KorAPUrl)) "poliqarp" else httr2::url_parse(KorAPUrl)$query$ql,
  fields = c("corpusSigle", "textSigle", "pubDate", "pubPlace", "availability",
    "textClass", "snippet", "tokens"),
  accessRewriteFatal = TRUE,
  verbose = kco@verbose,
  expand = length(vc) != length(query),
  as.df = FALSE,
  context = NULL
)

Arguments

kco

KorAPConnection() object (obtained e.g. from KorAPConnection()

query

string that contains the corpus query. The query language depends on the ql parameter. Either query must be provided or KorAPUrl.

vc

string describing the virtual corpus in which the query should be performed. An empty string (default) means the whole corpus, as far as it is license-wise accessible.

KorAPUrl

instead of providing the query and vc string parameters, you can also simply copy a KorAP query URL from your browser and use it here (and in KorAPConnection) to provide all necessary information for the query.

metadataOnly

logical that determines whether queries should return only metadata without any snippets. This can also be useful to prevent access rewrites. Note that the default value is TRUE. If you want your corpus queries to return not only metadata, but also KWICS, you need to authorize your RKorAPClient application as explained in the authorization section of the RKorAPClient Readme on GitHub and set the metadataOnly parameter to FALSE.

ql

string to choose the query language (see section on Query Parameters in the Kustvakt-Wiki for possible values.

fields

character vector specifying which metadata fields to retrieve for each match. Available fields depend on the corpus. For DeReKo (German Reference Corpus), possible fields include:

Text identification:

textSigle, docSigle, corpusSigle - hierarchical text identifiers

Publication info:

author, editor, title, docTitle, corpusTitle - authorship and titles

Temporal data:

pubDate, creationDate - when text was published/created

Publication details:

pubPlace, publisher, reference - where/how published

Text classification:

textClass, textType, textTypeArt, textDomain, textColumn - topic domain, genre, text type and column

Adminstrative and technical info:

corpusEditor, availability, language, foundries - access rights and annotations

Content data:

snippet, tokens, tokenSource, externalLink - actual text content, tokenization, and link to source text

System data:

indexCreationDate, indexLastModified - corpus indexing info

Use c("textSigle", "pubDate", "author") to retrieve multiple fields. Default fields provide basic text identification and publication metadata. The actual text content (snippet and tokens) are activated by default if metadataOnly is set to FALSE.

accessRewriteFatal

abort if query or given vc had to be rewritten due to insufficient rights (not yet implemented).

verbose

print some info

expand

logical that decides if query and vc parameters are expanded to all of their combinations. Defaults to TRUE, iff query and vc have different lengths

as.df

return result as data frame instead of as S4 object?

context

string that specifies the size of the left and the right context returned in snippet (provided that metadataOnly is set to false and that the necessary access right are met). The format of the context size specifcation (e.g. ⁠3-token,3-token⁠) is described in the Service: Search GET documentation of the Kustvakt Wiki. If the parameter is not set, the default context size secification of the KorAP server instance will be used. Note that you cannot overrule the maximum context size set in the KorAP server instance, as this is typically legally motivated.

Value

Depending on the as.df parameter, a tibble or a KorAPQuery() object that, among other information, contains the total number of results in ⁠@totalResults⁠. The resulting object can be used to fetch all query results (with fetchAll()) or the next page of results (with fetchNext()). A corresponding URL to be used within a web browser is contained in ⁠@webUIRequestUrl⁠ Please make sure to check ⁠$collection$rewrites⁠ to see if any unforeseen access rewrites of the query's virtual corpus had to be performed.

References

https://ids-pub.bsz-bw.de/frontdoor/index/index/docId/9026

See Also

KorAPConnection(), fetchNext(), fetchRest(), fetchAll(), corpusStats()

Other corpus search functions: fetchAll,KorAPQuery-method, fetchNext,KorAPQuery-method

Examples

## Not run: 

# Fetch basic metadata for "Ameisenplage"
KorAPConnection() |>
  corpusQuery("Ameisenplage") |>
  fetchAll()

# Fetch specific metadata fields for bibliographic analysis
query <- KorAPConnection() |>
  corpusQuery("Ameisenplage",
              fields = c("textSigle", "author", "title", "pubDate", "pubPlace", "textType"))
results <- fetchAll(query)
results@collectedMatches

## End(Not run)

## Not run: 

# Use the copy of a KorAP-web-frontend URL for an API query of "Ameise" in a virtual corpus
# and show the number of query hits (but don't fetch them).

KorAPConnection(verbose = TRUE) |>
  corpusQuery(
    KorAPUrl =
      "https://korap.ids-mannheim.de/?q=Ameise&cq=pubDate+since+2017&ql=poliqarp"
  )

## End(Not run)

## Not run: 

# Plot the time/frequency curve of "Ameisenplage"
KorAPConnection(verbose = TRUE) |>
  {
    . ->> kco
  } |>
  corpusQuery("Ameisenplage") |>
  fetchAll() |>
  slot("collectedMatches") |>
  mutate(year = lubridate::year(pubDate)) |>
  dplyr::select(year) |>
  group_by(year) |>
  summarise(Count = dplyr::n()) |>
  mutate(Freq = mapply(function(f, y) {
    f / corpusStats(kco, paste("pubDate in", y))@tokens
  }, Count, year)) |>
  dplyr::select(-Count) |>
  complete(year = min(year):max(year), fill = list(Freq = 0)) |>
  plot(type = "l")

## End(Not run)

Get corpus size and statistics

Description

Retrieve information about corpus size (documents, tokens, sentences, paragraphs) for the entire corpus or a virtual corpus subset.

Usage

## S4 method for signature 'KorAPConnection'
corpusStats(kco, vc = "", verbose = kco@verbose, as.df = FALSE)

Arguments

kco

KorAPConnection() object (obtained e.g. from KorAPConnection()

vc

string describing the virtual corpus. An empty string (default) means the whole corpus, as far as it is license-wise accessible.

verbose

logical. If TRUE, additional diagnostics are printed.

as.df

return result as data frame instead of as S4 object?

Value

Object containing corpus statistics with the following information:

vc

Virtual corpus definition used (empty string for entire corpus)

documents

Total number of documents in the (virtual) corpus

tokens

Total number of word tokens in the (virtual) corpus

sentences

Total number of sentences in the (virtual) corpus

paragraphs

Total number of paragraphs in the (virtual) corpus

webUIRequestUrl

URL to view this corpus subset in KorAP web interface

When as.df=TRUE, returns a data frame with these columns. When as.df=FALSE (default), returns a KorAPCorpusStats object with these values as slots.

Usage

# Get statistics for entire corpus
kcon <- KorAPConnection()
stats <- corpusStats(kcon)

# Get statistics for a specific time period
stats <- corpusStats(kcon, "pubDate in 2020")

# Access the number of tokens
stats@tokens

Examples

## Not run: 

kco <- KorAPConnection()

# Get statistics for entire corpus (returns S4 object)
stats <- corpusStats(kco)
stats@tokens  # Access number of tokens

# Get statistics for newspaper texts from 2017 (as data frame)
df <- corpusStats(kco, "pubDate in 2017 & textType=/Zeitung.*/", as.df = TRUE)
df$documents  # Access number of documents

# Compare corpus sizes across years
years <- 2015:2020
sizes <- sapply(years, function(y) {
  corpusStats(kco, paste("pubDate in", y))@tokens
})

## End(Not run)


Fetch all results of a KorAP query.

Description

fetchAll fetches all results of a KorAP query.

Usage

## S4 method for signature 'KorAPQuery'
fetchAll(kqo, verbose = kqo@korapConnection@verbose, ...)

Arguments

kqo

object obtained from corpusQuery()

verbose

print progress information if true

...

further arguments passed to fetchNext()

Value

The updated kqo object with all results in ⁠@collectedMatches⁠

See Also

Other corpus search functions: corpusQuery,KorAPConnection-method, fetchNext,KorAPQuery-method

Examples

## Not run: 
# Fetch all metadata of every query hit for "Ameisenplage" and show a summary
q <- KorAPConnection() |>
  corpusQuery("Ameisenplage") |>
  fetchAll()
q@collectedMatches

# Fetch also all KWICs
q <- KorAPConnection() |> auth() |>
 corpusQuery("Ameisenplage", metadataOnly = FALSE) |>
 fetchAll()
q@collectedMatches

# Retrieve title and text sigle metadata of all texts published on 1958-03-12
q <- KorAPConnection() |>
 corpusQuery("<base/s=t>", # this matches each text once
    vc = "pubDate in 1958-03-12",
    fields = c("textSigle", "title"),
) |>
 fetchAll()
q@collectedMatches

## End(Not run)


Fetch the next bunch of results of a KorAP query.

Description

fetchNext fetches the next bunch of results of a KorAP query.

Usage

## S4 method for signature 'KorAPQuery'
fetchNext(
  kqo,
  offset = kqo@nextStartIndex,
  maxFetch = maxResultsPerPage,
  verbose = kqo@korapConnection@verbose,
  randomizePageOrder = FALSE
)

Arguments

kqo

object obtained from corpusQuery()

offset

start offset for query results to fetch

maxFetch

maximum number of query results to fetch

verbose

print progress information if true

randomizePageOrder

fetch result pages in pseudo random order if true. Use set.seed() to set seed for reproducible results.

Value

The kqo input object with updated slots collectedMatches, apiResponse, nextStartIndex, hasMoreMatches

References

https://ids-pub.bsz-bw.de/frontdoor/index/index/docId/9026

See Also

Other corpus search functions: corpusQuery,KorAPConnection-method, fetchAll,KorAPQuery-method

Examples

## Not run: 

q <- KorAPConnection() |>
  corpusQuery("Ameisenplage") |>
  fetchNext()
q@collectedMatches

## End(Not run)


Fetches the remaining results of a KorAP query.

Description

Fetches the remaining results of a KorAP query.

Usage

## S4 method for signature 'KorAPQuery'
fetchRest(kqo, verbose = kqo@korapConnection@verbose, ...)

Arguments

kqo

object obtained from corpusQuery()

verbose

print progress information if true

...

further arguments passed to fetchNext()

Value

The updated kqo object with remaining results in ⁠@collectedMatches⁠

Examples

## Not run: 

q <- KorAPConnection() |>
  corpusQuery("Ameisenplage") |>
  fetchRest()
q@collectedMatches

## End(Not run)


Format duration in seconds to human-readable format

Description

Converts a duration in seconds to a formatted string with days, hours, minutes, and seconds. Used for ETA calculations and progress reporting.

Usage

format_duration(seconds)

Arguments

seconds

numeric duration in seconds

Value

character string with formatted duration

Examples

## Not run: 
format_duration(3661) # "01h 01m 01s"
format_duration(86461) # "1d 00h 01m 01s"

## End(Not run)

Format ETA information for display

Description

Helper function to format ETA information consistently across different methods.

Usage

format_eta_display(eta_seconds, estimated_completion_time)

Arguments

eta_seconds

numeric ETA in seconds (can be NA)

estimated_completion_time

POSIXct estimated completion time (can be NA)

Value

character string with formatted ETA or empty string if NA


Query frequencies of search expressions in virtual corpora

Description

frequencyQuery combines corpusQuery(), corpusStats() and ci() to compute a tibble with the absolute and relative frequencies and confidence intervals of one ore multiple search terms across one or multiple virtual corpora.

Usage

## S4 method for signature 'KorAPConnection'
frequencyQuery(
  kco,
  query,
  vc = "",
  conf.level = 0.95,
  as.alternatives = FALSE,
  ...
)

Arguments

kco

KorAPConnection() object (obtained e.g. from KorAPConnection()

query

corpus query string(s.) (can be a vector). The query language depends on the ql parameter. Either query must be provided or KorAPUrl.

vc

virtual corpus definition(s) (can be a vector)

conf.level

confidence level of the returned confidence interval (passed through ci() to prop.test()).

as.alternatives

LOGICAL that specifies if the query terms should be treated as alternatives. If as.alternatives is TRUE, the sum over all query hits, instead of the respective vc token sizes is used as total for the calculation of relative frequencies.

...

further arguments passed to or from other methods (see corpusQuery()), most notably expand, a logical that decides if query and vc parameters are expanded to all of their combinations. It defaults to TRUE, if query and vc have different lengths, and to FALSE otherwise.

Value

A tibble, with each row containing the following result columns for query and vc combinations:

Examples

## Not run: 

KorAPConnection(verbose = TRUE) |>
  frequencyQuery(c("Mücke", "Schnake"), paste0("pubDate in ", 2000:2003))

## End(Not run)


Get cache indicator string

Description

Helper function to generate cache indicator for logging.

Usage

get_cache_indicator(is_cached, cache_threshold = 0.1)

Arguments

is_cached

logical indicating if the item was cached

cache_threshold

minimum time threshold for non-cached items

Value

character string with cache indicator or empty string


Description

[Experimental]

Adds on-click events to data points of highcharts that were constructed with frequencyQuery() or collocationScoreQuery(). Clicks on data points then launch KorAP web UI queries for the given query term and virtual corpus in a separate tab.

Usage

hc_add_onclick_korap_search(hc)

Arguments

hc

A highchart htmlwidget object generated by e.g. frequencyQuery().

Value

The input highchart object with added on-click events.

See Also

Other highcharter-helpers: hc_freq_by_year_ci()

Examples

## Not run: 

library(highcharter)
library(tidyr)

KorAPConnection(verbose = TRUE) %>%
  collocationScoreQuery("Team", "agil", vc = paste("pubDate in", c(2014:2018)),
                        lemmatizeNodeQuery = TRUE, lemmatizeCollocateQuery = TRUE) %>%
                         pivot_longer(c("O", "E")) %>%
  hchart(type="spline", hcaes(label, value, group=name)) %>%
  hc_add_onclick_korap_search()

## End(Not run)


Plot interactive frequency curves with confidence intervals

Description

Convenience function for plotting typical frequency by year graphs with confidence intervals using highcharter.

Warning: This function may be moved to a new package.

Usage

hc_freq_by_year_ci(
  df,
  as.alternatives = FALSE,
  ylabel = if (as.alternatives) "%" else "ipm",
  smooth = FALSE,
  ...
)

Arguments

df

data frame like the value of a frequencyQuery()

as.alternatives

boolean decides whether queries should be treated as mutually exclusive and exhaustive wrt. to some meaningful class (e.g. spelling variants of a certain word form).

ylabel

defaults to ⁠%⁠ if as.alternatives is TRUE and to ipm otherwise.

smooth

boolean decides whether the graph is smoothed using the highcharts plot types spline and areasplinerange.

...

additional arguments passed to highcharter::hc_add_series()

Value

A highchart htmlwidget object containing the frequency plot.

See Also

Other highcharter-helpers: hc_add_onclick_korap_search()

Examples

## Not run: 

year <- c(1990:2018)
alternatives <- c("macht []{0,3} Sinn", "ergibt []{0,3} Sinn")
KorAPConnection(verbose = TRUE) %>%
  frequencyQuery(query = alternatives,
                 vc = paste("textType = /Zeit.*/ & pubDate in", year),
                 as.alternatives = TRUE) %>%
  hc_freq_by_year_ci(as.alternatives = TRUE)


kco <- KorAPConnection(verbose = TRUE)
expand_grid(
  condition = c("textDomain = /Wirtschaft.*/", "textDomain != /Wirtschaft.*/"),
  year = (2005:2011)
) %>%
  cbind(frequencyQuery(
    kco,
    "[tt/l=Heuschrecke]",
    paste0(.$condition, " & pubDate in ", .$year)
  ))  %>%
  hc_freq_by_year_ci()

## End(Not run)


Initialize KorAPConnection object

Description

Initialize KorAPConnection object

Usage

## S4 method for signature 'KorAPConnection'
initialize(
  .Object,
  KorAPUrl = if (is.null(Sys.getenv("KORAP_URL")) | Sys.getenv("KORAP_URL") == "") {
    
    "https://korap.ids-mannheim.de/"
 } else {
     Sys.getenv("KORAP_URL")
 },
  apiVersion = "v1.0",
  apiUrl,
  accessToken = getAccessToken(KorAPUrl),
  oauthClient = NULL,
  oauthScope = "search match_info",
  authorizationSupported = TRUE,
  userAgent = "R-KorAP-Client",
  timeout = 240,
  verbose = FALSE,
  cache = TRUE
)

Initialize KorAPQuery object

Description

Initialize KorAPQuery object

Usage

## S4 method for signature 'KorAPQuery'
initialize(
  .Object,
  korapConnection = NULL,
  request = NULL,
  vc = "",
  totalResults = 0,
  nextStartIndex = 0,
  fields = c("corpusSigle", "textSigle", "pubDate", "pubPlace", "availability",
    "textClass", "snippet", "tokens"),
  requestUrl = "",
  webUIRequestUrl = "",
  apiResponse = NULL,
  hasMoreMatches = FALSE,
  collectedMatches = NULL
)

Arguments

.Object

korapConnection

KorAPConnection object

request

query part of the request URL

vc

definition of a virtual corpus

totalResults

number of hits the query has yielded

nextStartIndex

at what index to start the next fetch of query results

fields

what data / metadata fields should be collected

requestUrl

complete URL of the API request

webUIRequestUrl

URL of a web frontend request corresponding to the API request

apiResponse

data-frame representation of the JSON response of the API request

hasMoreMatches

logical that signals if more query results can be fetched

collectedMatches

matches already fetched from the KorAP-API-server


Logging utilities for RKorAPClient

Description

This module provides centralized logging functions used throughout the package for progress reporting and ETA calculations. Log informational messages with optional coloring

Usage

log_info(v, ...)

Arguments

v

logical flag indicating whether to output the message

...

message components to concatenate and display


Merge duplicate collocate rows and re-calculate association scores and URLs. Useful if collocation analyses were performed separately for collocates on the left and right side of a node.

Description

Merge duplicate collocate rows and re-calculate association scores and URLs. Useful if collocation analyses were performed separately for collocates on the left and right side of a node.

Usage

mergeDuplicateCollocates(..., smoothingConstant = 0.5)

Arguments

...

tibbles with collocate rows returned from collocationAnalysis()

smoothingConstant

original smoothing constant (to be added only once to the observed values)

Value

tibble with unique collocate rows


Persist current access token in keyring

Description

Persist current access token in keyring

Usage

## S4 method for signature 'KorAPConnection'
persistAccessToken(kco, accessToken = kco@accessToken)

Arguments

kco

KorAPConnection object

accessToken

access token to be persisted. If not supplied, the current access token of the KorAPConnection object will be used.

Value

KorAPConnection object.

See Also

clearAccessToken(), auth()

Other initialization functions: KorAPConnection-class, auth,KorAPConnection-method, clearAccessToken,KorAPConnection-method

Examples

## Not run: 
kco <- KorAPConnection(accessToken = "e739u6eOzkwADQPdVChxFg")
persistAccessToken(kco)

kco <- KorAPConnection() %>%
  auth(app_id = "<my application id>") %>%
  persistAccessToken()

## End(Not run)


Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

broom

tidy

dplyr

bind_cols, group_by, mutate, n, select, summarise

lubridate

year

magrittr

%>%

tibble

as_tibble

tidyr

complete, expand_grid


Display KorAPConnection object

Description

Display KorAPConnection object

Usage

## S4 method for signature 'KorAPConnection'
show(object)

Arguments

object

KorAPConnection object


Preliminary synsemantic stopwords function

Description

[Experimental]

Preliminary synsemantic stopwords function to be used in collocation analysis.

Usage

synsemanticStopwords(...)

Arguments

...

future arguments for language detection

Details

Currently only suitable for German. See stopwords package for other languages.

Value

Vector of synsemantic stopwords.

See Also

Other collocation analysis functions: association-score-functions, collocationAnalysis,KorAPConnection-method, collocationScoreQuery,KorAPConnection-method


Retrieve metadata for a text, identified by its sigle (id)

Description

Retrieves metadata for a text, identified by its sigle (id) using the corresponding KorAP API (see Kustvakt Wiki). To retrieve the metadata for every text in a virtual corpus, use corpusQuery() with ⁠<base/s=t>⁠ as query, instead.

Usage

## S4 method for signature 'KorAPConnection'
textMetadata(kco, textSigle, verbose = kco@verbose)

Arguments

kco

KorAPConnection() object (obtained e.g. from KorAPConnection())

textSigle

unique text id (concatenation of corpus, document and text ids, separated by /, e.g. ) or vector thereof

verbose

logical. If TRUE, additional diagnostics are printed. Defaults to kco@verbose.

Value

Tibble with columns for each metadata property. In case of errors, such as non-existing texts/sigles, the tibble will also contain a column called errors. If there are metadata columns you cannot make sense of, please ignore them. The function simply returns all the metadata it gets from the server.

Examples

## Not run: 
KorAPConnection() |> textMetadata(c("WUD17/A97/08542", "WUD17/B96/57558", "WUD17/A97/08541"))

## End(Not run)