## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(SRMERS) ## ----eval = F----------------------------------------------------------------- # # shape detection under the fixed effect model # shape <- FERS(y = "ySim", # xMain = "hormone", # xConf = c("age", "invwt", "race2", "race3", "race4", "race5", # "season2", "season3", "season4", "smoking1", "ovum1", "diabetes1"), # dataset = data.sim.fixed, # nBasis = 5, # nIter = 1000) # # # shape detection under the mixed effects model # shape <- MERS(y = "ySim", # xMain = "hormone", # xConf = c("age", "invwt", "race2", "race3", "race4", "race5", # "season2", "season3", "season4", "smoking1", "ovum1", "diabetes1"), # xRand = "cluster", # dataset = data.sim.mixed, # nBasis = 5, # nIter = 1000) # # # mediation analysis # medModel <- SRSplineMed(data = data.sim.med, nBasis = 5, # exposure = "pesticide1", # mediator = "hormone", # outcome = "ySim", # confounderVec = c("age", "invwt", "race2", "race3", "race4", "race5", # "season2", "season3", "season4", "smoking1", "ovum1", # "diabetes1"), # shapeExp = "concave", shapeNonExp = "increasing", # mValue = 0.15, varAsymp = TRUE) # # # mediation analysis using linear regressions (binary exposure) # medModel <- LRMed(data = data.sim.med, # exposure = "pesticide1", # mediator = "hormone", # outcome = "ySim", # confounderVec = c("age", "invwt", "race2", "race3", "race4", "race5", # "season2", "season3", "season4", "smoking1", "ovum1", # "diabetes1"), # mValue = 0.15) # # # mediation analysis using linear regressions (continuous exposure) # medModel <- LRMed2(data = data.sim.med, # exposure = "pesticide1", # mediator = "hormone", # outcome = "ySim", # confounderVec = c("age", "invwt", "race2", "race3", "race4", "race5", # "season2", "season3", "season4", "smoking1", "ovum1", # "diabetes1"), # mValue = 0.15, eValueLow = 0.1, eValueHigh = 1.1)