Type: | Package |
Title: | 'Burgle': Stealing the Necessary Parts of Model Objects |
Version: | 0.1.2 |
Maintainer: | Paul R. Gunsalus <gunsalp@ccf.org> |
Description: | Provides a way to reduce model objects to necessary parts, making them easier to work with, store, share and simulate multiple values for new responses while allowing for parameter uncertainty. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.3 |
Imports: | stats, MASS, survival, riskRegression |
Suggests: | flexsurv, nnet |
Depends: | R (≥ 4.0.0) |
NeedsCompilation: | no |
Packaged: | 2024-10-01 01:11:33 UTC; gunsalp |
Author: | Paul R. Gunsalus |
Repository: | CRAN |
Date/Publication: | 2024-10-01 08:40:07 UTC |
Burgle
Description
Burgling what is necessary from different objects
Usage
burgle(object, ...)
## S3 method for class 'lm'
burgle(object, ...)
## S3 method for class 'glm'
burgle(object, ...)
## S3 method for class 'CauseSpecificCox'
burgle(object, ...)
## S3 method for class 'cph'
burgle(object, ...)
## S3 method for class 'flexsurvreg'
burgle(object, ...)
## S3 method for class 'multinom'
burgle(object, ...)
## S3 method for class 'coxph'
burgle(object, ...)
Arguments
object |
the model object to burgle |
... |
must be left empty for now |
Value
a burgle_ object
Examples
fit <- lm(Sepal.Length ~ Sepal.Width + Petal.Length, data = iris)
bfit <- burgle(fit)
object.size(fit)
object.size(bfit)
Predict for burgle methods
Description
Predict for burgle methods
Usage
## S3 method for class 'burgle_CauseSpecificCox'
predict(
object,
newdata = NULL,
type = "lp",
cause = 1,
original = TRUE,
draws = 1,
sims = 1,
times = NULL,
...
)
## S3 method for class 'burgle_cph'
predict(object, ...)
## S3 method for class 'burgle_flexsurvreg'
predict(
object,
newdata = NA,
original = TRUE,
draws = 1,
sims = 1,
type = "lp",
times = NULL,
...
)
## S3 method for class 'burgle_multinom'
predict(
object,
newdata = NA,
original = TRUE,
draws = 1,
sims = 1,
type = "lp",
floor = FALSE,
seed = NULL,
...
)
## S3 method for class 'burgle_coxph'
predict(
object,
newdata = NA,
original = TRUE,
draws = 1,
sims = 1,
type = "lp",
times = NULL,
...
)
## S3 method for class 'burgle_lm'
predict(
object,
newdata,
original = TRUE,
draws = 1,
sims = 1,
type = "lp",
se = FALSE,
limits = NULL,
...
)
## S3 method for class 'burgle_glm'
predict(
object,
newdata,
original = TRUE,
draws = 1,
sims = 1,
type = "lp",
se = FALSE,
...
)
Arguments
object |
the results of burgle_* object |
newdata |
new data of class data.frame |
type |
either 'lp', 'response', 'link' for glm or 'risk' if time dependent |
cause |
which cause do you want to predict |
original |
whether or not to predict using the original model |
draws |
how many different models to simulate |
sims |
how many simulated response to draw |
times |
if type = "risk" time for which to predict risk, if times and sims is multiple the return will be lists within lists |
... |
for future methods |
floor |
will set the minimum odds to 0, if negative odds exists |
seed |
a seed to specificy for simulating responses (multinomial only) |
se |
whether or not to include the standard error in the simulations |
limits |
limits (minimum and maximum) for simulated response values. |
Value
either a matrix or list of new model predictions