## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----caRa--------------------------------------------------------------------- library(caRamel) ## ----schaffer----------------------------------------------------------------- schaffer <- function(i) { s1 <- x[i,1] * x[i,1] s2 <- (x[i,1] - 2) * (x[i,1] - 2) return(c(s1, s2)) } ## ----schaffer_variable-------------------------------------------------------- nvar <- 1 # number of variables bounds <- matrix(data = 1, nrow = nvar, ncol = 2) # upper and lower bounds bounds[, 1] <- -10 * bounds[, 1] bounds[, 2] <- 10 * bounds[, 2] ## ----schaffer_objectives------------------------------------------------------ nobj <- 2 # number of objectives minmax <- c(FALSE, FALSE) # min and min ## ----schaffer_param----------------------------------------------------------- popsize <- 100 # size of the genetic population archsize <- 100 # size of the archive for the Pareto front maxrun <- 1000 # maximum number of calls prec <- matrix(1.e-3, nrow = 1, ncol = nobj) # accuracy for the convergence phase ## ----schaffer_launch, fig.show="hide", results="hide"------------------------- results <- caRamel(nobj, nvar, minmax, bounds, schaffer, popsize, archsize, maxrun, prec, carallel=FALSE, sensitivity=TRUE) # sensitivity required ## ----schaffer_OK-------------------------------------------------------------- print(results$success==TRUE) ## ----schaffer_plot1----------------------------------------------------------- plot(results$objectives[,1], results$objectives[,2], main="Schaffer Pareto front", xlab="Objective #1", ylab="Objective #2") ## ----schaffer_plot2----------------------------------------------------------- plot(results$parameters, main="Corresponding values for X", xlab="Element of the archive", ylab="X Variable") ## ----jacobian----------------------------------------------------------------- names(results$derivatives) ## ----sensi-------------------------------------------------------------------- plot(results$parameters, results$derivatives$Jacobian_1, main="Sensitivitiy for the first objective", ylab="Sensitivity values", xlab="X values") ## ----histo-------------------------------------------------------------------- hist(results$derivatives$Jacobian_2, main="Sensitivitiy for the second objective", xlab="Sensitivity values", ylab="Distribution of the Pareto front") ## ----sensi2------------------------------------------------------------------- plot(results$derivatives$Jacobian_1, results$derivatives$Jacobian_2, main="Sensitivitiy for both objectives", ylab="Sensitivity values #2", xlab="Sensitivity values #1")