Type: | Package |
Title: | Parameter Estimation and Inference in a Cointegrating Regression |
Date: | 2016-06-14 |
Version: | 0.2.0 |
Description: | Cointegration methods are widely used in empirical macroeconomics and empirical finance. It is well known that in a cointegrating regression the ordinary least squares (OLS) estimator of the parameters is super-consistent, i.e. converges at rate equal to the sample size T. When the regressors are endogenous, the limiting distribution of the OLS estimator is contaminated by so-called second order bias terms, see e.g. Phillips and Hansen (1990) <doi:10.2307/2297545>. The presence of these bias terms renders inference difficult. Consequently, several modifications to OLS that lead to zero mean Gaussian mixture limiting distributions have been proposed, which in turn make standard asymptotic inference feasible. These methods include the fully modified OLS (FM-OLS) approach of Phillips and Hansen (1990) <doi:10.2307/2297545>, the dynamic OLS (D-OLS) approach of Phillips and Loretan (1991) <doi:10.2307/2298004>, Saikkonen (1991) <doi:10.1017/S0266466600004217> and Stock and Watson (1993) <doi:10.2307/2951763> and the new estimation approach called integrated modified OLS (IM-OLS) of Vogelsang and Wagner (2014) <doi:10.1016/j.jeconom.2013.10.015>. The latter is based on an augmented partial sum (integration) transformation of the regression model. IM-OLS is similar in spirit to the FM- and D-OLS approaches, with the key difference that it does not require estimation of long run variance matrices and avoids the need to choose tuning parameters (kernels, bandwidths, lags). However, inference does require that a long run variance be scaled out. This package provides functions for the parameter estimation and inference with all three modified OLS approaches. That includes the automatic bandwidth selection approaches of Andrews (1991) <doi:10.2307/2938229> and of Newey and West (1994) <doi:10.2307/2297912> as well as the calculation of the long run variance. |
URL: | https://github.com/aschersleben/cointReg |
BugReports: | https://github.com/aschersleben/cointReg/issues |
License: | GPL-3 |
Imports: | checkmate (≥ 1.6.0), MASS, matrixStats (≥ 0.14.1) |
RoxygenNote: | 5.0.1 |
Suggests: | testthat, knitr, rmarkdown |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2016-06-14 07:49:50 UTC; Aschersleben |
Author: | Philipp Aschersleben [aut, cre], Martin Wagner [aut] (Author of underlying MATLAB code.) |
Maintainer: | Philipp Aschersleben <aschersleben@statistik.tu-dortmund.de> |
Repository: | CRAN |
Date/Publication: | 2016-06-14 11:58:42 |
The cointReg package
Description
Parameter Estimation and Inference in a Cointegrating Regression
Details
See the vignette:
vignette("cointReg")
See the DESCRIPTION:
help(package = cointReg)
See the README:
https://github.com/aschersleben/cointReg/blob/master/README.md
Open the package documentation page:
package?cointReg
Further information and bug reporting:
https://github.com/aschersleben/cointReg
Functions
-
cointReg(method = c("FM", "D", "IM"), ...)
General function to estimate parameters of the given model. Three methods are possible; they can be choosen directly by using one of the following functions:-
cointRegFM
: Fully Modified OLS -
cointRegD
: Dynamic OLS -
cointRegIM
: Integrated Modified OLS
-
-
print
Print clear results. -
plot
Plot the residuals of acointReg
model. Helper functions:
Checking inputs and arguments:
checkObject
,checkVars
Calculation of bandwidth and long run variance:
getBandwidth
,getBandwidthAnd
,getBandwidthNW
getLongRunVar
,getLongRunWeights
Additional D-OLS functions:
getLeadLag
,makeLeadLagMatrix
,getModD
,checkDoptions
Check list D.options.
Description
Checking the list D.options, that is an argument of
cointRegD
.
Usage
checkDoptions(n.lag = NULL, n.lead = NULL, kmax = c("k4", "k12"),
info.crit = c("AIC", "BIC"))
Arguments
n.lag , n.lead |
[ |
kmax |
[ |
info.crit |
[ |
Value
[list
]. List with the checked and (if necessary)
converted arguments.
If one of n.lag
and n.lead
is
NULL
, only kmax
and info.crit
will be not NULL
.
See Also
Other check: checkObject
,
checkVars
Examples
checkDoptions(n.lag = 3, n.lead = 4)
checkDoptions(info.crit = "BIC")
checkDoptions()
# It's not sufficient to include only one of "n.lag" and "n.lead":
checkDoptions(n.lag = 2)
Variable check for single objects.
Description
Checking the variable and convert it for internal use, if necessary.
(Also used by the cointmonitoR
package.)
Usage
checkObject(obj, obj.name, ..., out = "return", .env)
Arguments
obj |
[ |
obj.name |
[ |
... |
[ |
out |
[ |
.env |
[ |
Details
Possible values of obj.name
to check:
"y"
,"x.stat"
:-
Of type
numeric
,matrix
ordata.frame
. Only the first row/column will be used.
Converted to object: column matrix "y.fm"
,"x.coint"
,"deter"
:-
Of type
numeric
,matrix
ordata.frame
.
Converted to object: column matrix "m"
:-
Of type
numeric(1)
, has to be greater than 0. "model"
:-
One of
c("FM", "D", "IM")
. "signif.level"
:-
Of type
numeric(1)
, has to be in the interval [0.01, 0.1]. "trend"
,"return.stats"
,"return.input"
,"demeaning"
,"t.test"
:-
Converted to object:
logical(1)
. "kernel"
:-
One of
c("ba", "bo", "da", "pa", "qs", "th", "tr")
. "bandwidth"
:-
One of
c("and", "nw")
. "selector"
:-
One or both
c(1, 2)
.
Value
The checked and converted argument is assigned to
the given environment (.env
) and/or returned (depending on the
argument out
).
See Also
Other check: checkDoptions
,
checkVars
Examples
x = matrix(1:20, nrow = 2)
x2 = checkObject(x, "x.coint")
x2
env = environment()
y = 1:10
checkObject(y, out = "assign", .env = env)
y
# example for the use of the ... argument:
det = rbind(1, 1:10)
x3 = sin(10:20)
det2 = checkObject(deter = det)
det2
(checkObject(deter = det, x.stat = x3))
Multiple variable checks for certain values.
Description
Checking the arguments and convert them for internal use, if necessary.
Usage
checkVars(..., out = "assign", .env)
Arguments
... |
[ |
out |
[ |
.env |
[ |
Details
See checkObject
for details.
Value
The checked and converted arguments are assigned to
the given environment (.env
) or invisibly returned as a list
.
See Also
Other check: checkDoptions
,
checkObject
Examples
env = environment()
x.data = data.frame(a = 1:10, b = 20:11)
y.data = 1:10
checkVars(x.coint = x.data, y = y.data, .env = env)
x.coint
y
test = checkVars(x.coint = x.data, y = y.data, out = "return")
str(test)
# If the variables already have the "right" name,
# there's no need to do something like
# checkVars(kernel = kernel, bandwidth = bandwidth) -
# just call checkVars without specifing the arguments:
kernel = "q"
bandwidth = "a"
(checkVars(kernel, bandwidth, out = "return"))
Estimation and Inference for cointegrating regressions
Description
Computes either the Phillips and Hansen (1990) Fully Modified OLS estimator, or the Saikkonen (1990) Dynamic OLS estimator, or the Vogelsang and Wagner (2014) Integrated Modified OLS estimator.
Usage
cointReg(method = c("FM", "D", "IM"), x, y, ...)
Arguments
method |
[
|
x |
[ |
y |
[ |
... |
[
|
Value
[cointReg
] object.
References
Phillips, P.C.B. and B. Hansen (1990): "Statistical Inference in Instrumental Variables Regression with I(1) Processes," Review of Economic Studies, 57, 99–125, DOI:10.2307/2297545.
Phillips, P.C.B. and M. Loretan (1991): "Estimating Long Run Economic Equilibria," Review of Economic Studies, 58, 407–436, DOI:10.2307/2298004.
Saikkonen, P. (1991): "Asymptotically Efficient Estimation of Cointegrating Regressions," Econometric Theory, 7, 1–21, DOI:10.1017/S0266466600004217.
Stock, J.H. and M.W. Watson (1993): "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, 61, 783–820, DOI:10.2307/2951763.
Vogelsang, T.J. and M. Wagner (2014): "Integrated Modified OLS Estimation and Fixed-b Inference for Cointegrating Regressions," Journal of Econometrics, 148, 741–760, DOI:10.1016/j.jeconom.2013.10.015.
See Also
Other cointReg: cointRegD
,
cointRegFM
, cointRegIM
,
plot.cointReg
, print.cointReg
Examples
set.seed(1909)
x1 = cumsum(rnorm(100, mean = 0.05, sd = 0.1))
x2 = cumsum(rnorm(100, sd = 0.1)) + 1
x3 = cumsum(rnorm(100, sd = 0.2)) + 2
x = cbind(x1, x2, x3)
y = x1 + x2 + x3 + rnorm(100, sd = 0.2) + 1
deter = cbind(level = 1, trend = 1:100)
cointReg("FM", x = x, y = y, deter = deter, kernel = "ba",
bandwidth = "and")
# Compare the results of all three models:
res = sapply(c("FM", "D", "IM"), cointReg, x = x, y = y, deter = deter)
do.call(cbind, lapply(res, "[[", "theta"))
Dynamic OLS
Description
Computes the Saikkonen (1990) Dynamic OLS estimator.
Usage
cointRegD(x, y, deter, kernel = c("ba", "pa", "qs", "tr"),
bandwidth = c("and", "nw"), n.lead = NULL, n.lag = NULL,
kmax = c("k4", "k12"), info.crit = c("AIC", "BIC"), demeaning = FALSE,
check = TRUE, ...)
Arguments
x |
[ |
y |
[ |
deter |
[ |
kernel |
[ |
bandwidth |
[ |
n.lead , n.lag |
[ |
kmax |
[ |
info.crit |
[ |
demeaning |
[ |
check |
[ |
... |
Arguments passed to |
Details
The equation for which the FM-OLS estimator is calculated:
y = \delta \cdot D + \beta \cdot x + u
with D
as the deterministics matrix.
Then \theta = (\delta', \beta')'
is the full parameter vector.
Information about the D-OLS specific arguments:
n.lag
,n.lead
A positive number to set the number of lags and leads. If at least one of them is equal to
NULL
(default), the functiongetLeadLag
will be used to calculate them automatically (see Choi and Kurozumi (2012) for details). In that case, the following two arguments are needed.kmax
Maximal value for lags and leads, when they are calculated automatically. If "k4", then the maximum is equal to
floor(4 * (x.T/100)^(1/4))
, else it'sfloor(12 * (x.T/100)^(1/4))
withx.T
is equal to the data's length. One of"k4"
or"k12"
. Default is"k4"
.info.crit
Information criterion to use for the automatical calculation of lags and leads. One of
"AIC"
or"BIC"
. Default is"AIC"
.
Value
[cointReg
]. List with components:
beta
[numeric
]-
coefficients of the regressors
delta
[numeric
]-
coefficients of the deterministics
theta
[numeric
]-
combined coefficients of
beta
anddelta
sd.theta
[numeric
]-
standard errors for
theta
t.theta
[numeric
]-
t-values for
theta
p.theta
[numeric
]-
p-values for
theta
theta.all
[numeric
]-
combined coefficients of
beta
,delta
and the auxiliary leads-and-lags regressors residuals
[numeric
]-
D-OLS residuals (length depends on leads and lags)
omega.u.v
[numeric
]-
conditional long-run variance based on OLS residuals
varmat
[matrix
]-
variance-covariance matrix
Omega
[list
]-
the whole long-run variance matrix and parts of it
bandwidth
[list
]-
number and name of the calculated bandwidth
kernel
[character
]-
abbr. name of kernel type
lead.lag
[list
]-
leads-and-lags parameters
References
Phillips, P.C.B. and M. Loretan (1991): "Estimating Long Run Economic Equilibria," Review of Economic Studies, 58, 407–436, DOI:10.2307/2298004.
Saikkonen, P. (1991): "Asymptotically Efficient Estimation of Cointegrating Regressions," Econometric Theory, 7, 1–21, DOI:10.1017/S0266466600004217.
Stock, J.H. and M.W. Watson (1993): "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, 61, 783–820, DOI:10.2307/2951763.
See Also
Other cointReg: cointRegFM
,
cointRegIM
, cointReg
,
plot.cointReg
, print.cointReg
Other D-OLS: getLeadLag
,
getModD
, makeLeadLagMatrix
Examples
set.seed(1909)
x1 <- cumsum(rnorm(100, mean = 0.05, sd = 0.1))
x2 <- cumsum(rnorm(100, sd = 0.1)) + 1
x3 <- cumsum(rnorm(100, sd = 0.2)) + 2
x <- cbind(x1, x2, x3)
y <- x1 + x2 + x3 + rnorm(100, sd = 0.2) + 1
deter <- cbind(level = 1, trend = 1:100)
test <- cointRegD(x, y, deter, n.lead = 2, n.lag = 2,
kernel = "ba", bandwidth = "and")
print(test)
test2 <- cointRegD(x, y, deter, kmax = "k4", info.crit = "BIC",
kernel = "ba", bandwidth = "and")
print(test2)
Fully Modified OLS
Description
Computes the Phillips and Hansen (1990) Fully Modified OLS estimator.
Usage
cointRegFM(x, y, deter, kernel = c("ba", "pa", "qs", "tr"),
bandwidth = c("and", "nw"), demeaning = FALSE, check = TRUE, ...)
Arguments
x |
[ |
y |
[ |
deter |
[ |
kernel |
[ |
bandwidth |
[ |
demeaning |
[ |
check |
[ |
... |
Arguments passed to |
Details
The equation for which the FM-OLS estimator is calculated:
y = \delta \cdot D + \beta \cdot x + u
with D
as the deterministics matrix.
Then \theta = (\delta', \beta')'
is the full parameter vector.
The calculation of t-values and the variance-covariance matrix is only
possible, if y
is one-dimensional.
Value
[cointReg
]. List with components:
delta
[numeric
|matrix
]-
coefficients as vector / matrix
beta
[numeric
|matrix
]-
coefficients as vector / matrix
theta
[numeric
|matrix
]-
combined coefficients of
beta
anddelta
as vector / matrix sd.theta
[numeric
]-
standard errors for
theta
t.theta
[numeric
]-
t-values for
theta
p.theta
[numeric
]-
p-values for
theta
residuals
[numeric
]-
FM-OLS residuals (first value is always missing)
omega.u.v
[numeric
]-
conditional long-run variance based on OLS residuals.
varmat
[matrix
]-
variance-covariance matrix
Omega
[list
]-
the whole long-run variance matrix and parts of it
beta.OLS
[numeric
|matrix
]-
OLS coefficients as vector / matrix
delta.OLS
[numeric
|matrix
]-
OLS coefficients as vector / matrix
u.OLS
[numeric
]-
OLS residuals
bandwidth
[list
]-
number
andname
of bandwidth kernel
[character
]-
abbr. name of kernel type
References
Phillips, P.C.B. and B. Hansen (1990): "Statistical Inference in Instrumental Variables Regression with I(1) Processes," Review of Economic Studies, 57, 99–125, DOI:10.2307/2297545.
See Also
Other cointReg: cointRegD
,
cointRegIM
, cointReg
,
plot.cointReg
, print.cointReg
Examples
set.seed(1909)
x1 = cumsum(rnorm(100, mean = 0.05, sd = 0.1))
x2 = cumsum(rnorm(100, sd = 0.1)) + 1
x3 = cumsum(rnorm(100, sd = 0.2)) + 2
x = cbind(x1, x2, x3)
y = x1 + x2 + x3 + rnorm(100, sd = 0.2) + 1
deter = cbind(level = 1, trend = 1:100)
test = cointRegFM(x, y, deter, kernel = "ba", bandwidth = "and")
print(test)
Integrated Modified OLS
Description
Computes the Vogelsang and Wagner (2014) Integrated Modified OLS estimator.
Usage
cointRegIM(x, y, deter, selector = 1, t.test = TRUE, kernel = c("ba",
"pa", "qs", "tr"), bandwidth = c("and", "nw"), check = TRUE, ...)
Arguments
x |
[ |
y |
[ |
deter |
[ |
selector |
[ |
t.test |
[ |
kernel |
[ |
bandwidth |
[ |
check |
[ |
... |
Arguments passed to |
Details
The equation for which the IM-OLS estimator is calculated (type 1):
S_y = \delta \cdot S_{D} + \beta \cdot S_{x} + \gamma \cdot x + u
where S_y
, S_x
and S_D
are the cumulated
sums of y
, x
and D
(with D
as the deterministics
matrix).
Then \theta = (\delta', \beta', \gamma')'
is the full parameter vector.
The equation for which the IM-OLS estimator is calculated (type 2):
S_y = \delta \cdot S_D + \beta \cdot S_x + \gamma \cdot x +
\lambda \cdot Z + u
where S_y
, S_x
and S_D
are the cumulated
sums of y
, x
and D
(with D
as the deterministics
matrix) and Z
as defined in equation (19) in Vogelsang and Wagner
(2015).
Then \theta = (\delta', \beta', \gamma', \lambda')'
is the full
parameter vector.
Value
[cointReg
]. List with components:
delta
[numeric
]-
coefficients of the deterministics (cumulative sum
S_{deter}
) beta
[numeric
]-
coefficients of the regressors (cumulative sum
S_{x}
) gamma
[numeric
]-
coefficients of the regressors (original regressors
x
) theta
[numeric
]-
combined coefficients of
beta
,delta
sd.theta
[numeric
]-
standard errors for the
theta
coefficients t.theta
[numeric
]-
t-values for the
theta
coefficients p.theta
[numeric
]-
p-values for the
theta
coefficients theta.all
[numeric
]-
combined coefficients of
beta
,delta
,gamma
residuals
[numeric
]-
IM-OLS residuals. Attention: These are the first differences of
S_u
– the original residuals are stored inu.plus
. u.plus
[numeric
]-
IM-OLS residuals, not differenced. See
residuals
above. omega.u.v
[numeric
]-
conditional long-run variance based on OLS residuals, via
cointRegFM
(in case of argumentt.test
isTRUE
) orNULL
varmat
[matrix
]-
variance-covariance matrix
Omega
[matrix
]-
NULL
(no long-run variance matrix for this regression type) bandwidth
[list
]-
number
andname
of bandwidth ift.test = TRUE
kernel
[character
]-
abbr. name of kernel type if
t.test = TRUE
delta2
[numeric
]-
coefficients of the deterministics (cumulative sum
S_{deter}
) for regression type 2 beta2
[numeric
]-
coefficients of the regressors (cumulative sum
S_{x}
) for regression type 2 gamma2
[numeric
]-
coefficients of the regressors (original regressors
x
) for regression type 2 lambda2
[numeric
]-
coefficients of the Z regressors for regression type 2
theta2
[numeric
]-
combined coefficients of
beta2
,delta2
,gamma2
andlambda2
for regression type 2 u.plus2
[numeric
]-
IM-OLS residuals for regression type 2
References
Vogelsang, T.J. and M. Wagner (2014): "Integrated Modified OLS Estimation and Fixed-b Inference for Cointegrating Regressions," Journal of Econometrics, 148, 741–760, DOI:10.1016/j.jeconom.2013.10.015.
See Also
Other cointReg: cointRegD
,
cointRegFM
, cointReg
,
plot.cointReg
, print.cointReg
Examples
set.seed(1909)
x1 = cumsum(rnorm(100, mean = 0.05, sd = 0.1))
x2 = cumsum(rnorm(100, sd = 0.1)) + 1
x3 = cumsum(rnorm(100, sd = 0.2)) + 2
x = cbind(x1, x2, x3)
y = x1 + x2 + x3 + rnorm(100, sd = 0.2) + 1
deter = cbind(level = 1, trend = 1:100)
test = cointRegIM(x, y, deter, selector = c(1, 2), t.test = TRUE,
kernel = "ba", bandwidth = "and")
print(test)
Automatic Bandwidth Selection
Description
Automatic bandwidth selection of Andrews (1991) and of Newey and West (1994).
Usage
getBandwidth(u, bandwidth = c("and", "nw"), kernel, ..., check = TRUE)
getBandwidthAnd(u, kernel = c("ba", "pa", "qs", "th", "tr"), check = TRUE)
getBandwidthNW(u, kernel = c("ba", "pa", "qs"), inter = FALSE,
u.weights = NULL, check = TRUE)
Arguments
u |
[ |
bandwidth |
[ |
kernel |
[ |
... |
Arguments passed to |
check |
[ |
inter |
[ |
u.weights |
[ |
Details
For Andrews (1991), the AR(1) individual version is implemented.
The kernel that is used for calculating the long-run variance can be one of the following:
-
"ba"
: Bartlett kernel -
"pa"
: Parzen kernel -
"qs"
: Quadratic Spectral kernel -
"th"
: Tukey-Hanning kernel (only ifbandwidth = "and"
) -
"tr"
: Truncated kernel (only ifbandwidth = "and"
)
Value
[numeric(1)
]. Bandwidth
Functions
-
getBandwidthAnd
: Automatic bandwidth selection of Andrews (1991). -
getBandwidthNW
: Automatic bandwidth selection of Newey and West (1994).
References
Andrews, D.W.K. (1991): "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, 59, 817–854, DOI:10.2307/2938229.
Newey, W.K. and K.D. West (1994): "Automatic Lag Selection in Covariance Matrix Estimation", Review of Economic Studies, 61, 631–653, DOI:10.2307/2297912.
See Also
Examples
set.seed(1909)
x <- rnorm(100)
getBandwidth(x, kernel = "ba")
getBandwidth(x, bandwidth = "nw", kernel = "ba")
x2 <- arima.sim(model = list(ar = c(0.7, 0.2)), innov = x, n = 100)
getBandwidth(x2, kernel = "qs")
getBandwidth(x2, bandwidth = "nw", kernel = "qs")
Leads and Lags
Description
Generates "optimal" numbers of leads and lags for the Dynamic OLS estimator.
Usage
getLeadLag(x, y, deter, max.lag, max.lead, ic = c("AIC", "BIC"),
symmet = FALSE, check = FALSE)
Arguments
x |
[ |
y |
[ |
deter |
[ |
max.lead , max.lag |
[ |
ic |
[ |
symmet |
[ |
check |
[ |
Value
[numeric(2)
]. "Optimal" numbers of leads and lags.
See Also
Other D-OLS: cointRegD
,
getModD
, makeLeadLagMatrix
Examples
set.seed(1909)
y <- matrix(cumsum(rnorm(100)), ncol = 1)
x <- matrix(rep(y, 4) + rnorm(400, mean = 3, sd = 2), ncol = 4)
deter <- cbind(1, 1:100)
cointReg:::getLeadLag(x = x, y = y, deter = deter, max.lag = 5,
max.lead = 5, ic = "AIC", symmet = FALSE)
Long-Run Variance
Description
This function computes the long-run variance Omega, the one sided long-run variance Delta (starting with lag 0) and the variance Sigma from an input matrix of residuals.
Usage
getLongRunVar(u, bandwidth = c("and", "nw"), kernel = c("ba", "bo", "da",
"pa", "qs", "tr"), demeaning = FALSE, check = TRUE, ...)
Arguments
u |
[ |
bandwidth |
[ |
kernel |
[ |
demeaning |
[ |
check |
[ |
... |
Arguments passed to |
Details
The bandwidth can be one of the following:
-
"ba"
: Bartlett kernel -
"bo"
: Bohmann kernel -
"da"
: Daniell kernel -
"pa"
: Parzen kernel -
"qs"
: Quadratic Spectral kernel -
"tr"
: Truncated kernel
Value
[list
] with components:
Omega
[matrix
]-
Long-run variance matrix
Delta
[matrix
]-
One-sided long-run variance matrix
Sigma
[matrix
]-
Variance matrix
See Also
Examples
set.seed(1909)
x <- rnorm(100)
band <- getBandwidthAnd(x, kernel = "ba")
getLongRunVar(x, kernel = "ba", bandwidth = band)
# shorter:
getLongRunVar(x, kernel = "ba", bandwidth = "and")
x2 <- arima.sim(model = list(ar = c(0.7, 0.2)), innov = x, n = 100)
x2 <- cbind(a = x2, b = x2 + rnorm(100))
getLongRunVar(x2, kernel = "ba", bandwidth = "nw")
Weights for Long-Run Variance
Description
Compute the weights corresponding to some kernel funtions.
Usage
getLongRunWeights(n, bandwidth, kernel)
Arguments
n |
[ |
bandwidth |
[ |
kernel |
[ |
Value
[list
] with components:
w
[numeric
]-
Vector of weights
upper
[numeric(1)
]-
Index to largest non-zero entry in w
See Also
Examples
lrw.ba = cointReg:::getLongRunWeights(100, kernel = "ba", bandwidth = 25)
plot(lrw.ba$w)
Get D OLS model.
Description
Generates an lm
model for the Dynamic OLS estimator.
Usage
getModD(x, y, deter, n.lag, n.lead, check = FALSE)
Arguments
x |
[ |
y |
[ |
deter |
[ |
n.lag , n.lead |
[ |
check |
[ |
Value
[lm
]. An lm
object, containing an additional
list element (aux
) with D-OLS specific objects:
Z
[matrix
]-
jointed matrix of deterministics and x
x.delta
[matrix
]-
differences of x
dx.all
[matrix
]-
leads-and-lags matrix
all.trunc
[matrix
]-
truncated version of jointed matrix of
Z
anddx.all
y.trunc
[matrix
]-
truncated version of
y
See Also
Other D-OLS: cointRegD
,
getLeadLag
, makeLeadLagMatrix
Examples
set.seed(1909)
y <- matrix(cumsum(rnorm(100)), ncol = 1)
x <- matrix(rep(y, 4) + rnorm(400, mean = 3, sd = 2), ncol = 4)
deter <- cbind(1, 1:100)
cointReg:::getModD(x = x, y = y, deter = deter, n.lag = 2, n.lead = 3)
Leads-and-Lags Matrix
Description
Generates leads-and-lags matrix for the Dynamic OLS estimator.
Usage
makeLeadLagMatrix(x, n.lag, n.lead)
Arguments
x |
[ |
n.lag , n.lead |
[ |
Value
[matrix
]. Leads-and-lags matrix.
See Also
Other D-OLS: cointRegD
,
getLeadLag
, getModD
Examples
x <- matrix(1:20, 2, byrow = TRUE)
cointReg:::makeLeadLagMatrix(x = x, n.lag = 2, n.lead = 3)
Plot Method for Cointegration Models (Modified OLS).
Description
Plotting objects of class "cointReg"
. Currently, only the residuals
will be plotted.
Usage
## S3 method for class 'cointReg'
plot(x, type, main, xlab, ylab, axes = TRUE, ...)
Arguments
x |
[ |
type |
[ |
main , xlab , ylab |
[ |
axes |
[ |
... |
[ |
See Also
Other cointReg: cointRegD
,
cointRegFM
, cointRegIM
,
cointReg
, print.cointReg
Examples
set.seed(42)
x = data.frame(x1 = cumsum(rnorm(200)), x2 = cumsum(rnorm(200)))
eps1 = rnorm(200, sd = 2)
y = x$x1 - x$x2 + 10 + eps1
deter = cbind(level = rep(1, 200))
test = cointRegFM(x = x, y = y, deter = deter)
plot(test)
Print Method for Cointegration Models (Modified OLS).
Description
Printing objects of class "cointReg"
.
Usage
## S3 method for class 'cointReg'
print(x, ..., digits = getOption("digits"),
all.coeffs = FALSE)
Arguments
x |
[ |
... |
ignored |
digits |
[ |
all.coeffs |
[ |
Value
The invisible x
object.
See Also
Other cointReg: cointRegD
,
cointRegFM
, cointRegIM
,
cointReg
, plot.cointReg
Examples
set.seed(42)
x = data.frame(x1 = cumsum(rnorm(200)), x2 = cumsum(rnorm(200)))
eps1 = rnorm(200, sd = 2)
y = x$x1 - x$x2 + 10 + eps1
deter = cbind(level = rep(1, 200))
test.fm = cointRegFM(x = x, y = y, deter = deter)
print(test.fm)
test.d = cointRegD(x = x, y = y, deter = deter)
print(test.d)
test.im2 = cointRegIM(x = x, y = y, deter = deter)
print(test.im2)