## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set(warning = FALSE, message = FALSE, collapse = TRUE, comment = "#>", out.width = "\\textwidth", fig.height = 4, fig.width = 7, fig.align = "center", dpi = 300) # only build vignettes locally and not for R CMD check knitr::opts_chunk$set(eval = nzchar(Sys.getenv("BUILD_VIGNETTES"))) ## ----fiespa-data-------------------------------------------------------------- # library(sf) # library(ggplot2) # library(colorist) # # # load data # data("fiespa_occ") # fiespa_occ ## ----fiespa-metrics----------------------------------------------------------- # # pull information from the stack # m1 <- metrics_pull(fiespa_occ) # m1 ## ----fiespa-palette----------------------------------------------------------- # # generate a color palette # p1 <- palette_timecycle(fiespa_occ) # head(p1) ## ----fiespa-mapmult----------------------------------------------------------- # # map each of the layers # map_multiples(m1, p1, ncol = 4, labels = names(fiespa_occ)) ## ----fiespa-mapsing----------------------------------------------------------- # # map one layer # map_single(m1, p1, layer = 6) ## ----fiespa-distill----------------------------------------------------------- # # distill distribution information across layers # m1_distill <- metrics_distill(fiespa_occ) # # # visualize distilled information on a single map # map_single(m1_distill, p1) ## ----fielsp-legend------------------------------------------------------------ # # generate a legend # legend_timecycle(p1, origin_label = "Jan 1") ## ----fisher-data-------------------------------------------------------------- # # loda data # data("fisher_ud") # fisher_ud ## ----fisher-map--------------------------------------------------------------- # # pull information from the stack # m2 <- metrics_pull(fisher_ud) # # # generate a color palette # p2 <- palette_timeline(fisher_ud) # # # map each of the layers # map_multiples(m2, p2) ## ----fisher-lambda_i---------------------------------------------------------- # # map each of the layers and adjust visual weights # map_multiples(m2, p2, lambda_i = -5) ## ----fisher-distill----------------------------------------------------------- # # distill distribution information across layers # m2_distill <- metrics_distill(fisher_ud) # # # visualize distilled information on a single map # map_single(m2_distill, p2, lambda_i = -5) ## ----fisher-legend------------------------------------------------------------ # # generate a legend # legend_timeline(p2, time_labels = c("April 7", "April 15")) ## ----elephant-pull------------------------------------------------------------ # # load data # data("elephant_ud") # # # pull information from the stack # m3 <- metrics_pull(elephant_ud) # # # assign a color palette # p3 <- palette_set(elephant_ud) # # # generate maps for each individual # map_multiples(m3, p3, ncol = 2, lambda_i = -5, labels = names(elephant_ud)) ## ----elephant-distill--------------------------------------------------------- # # distill distribution information across individuals # m3_distill <- metrics_distill(elephant_ud) # # # visualize distilled information on a single map # map_single(m3_distill, p3, lambda_i = -5) # # generate a legend # legend_set(p3, group_labels = names(elephant_ud)) ## ----elephant-sfdl, eval = FALSE---------------------------------------------- # # download data to a temp directory # url <- "https://github.com/mstrimas/colorist/raw/master/data-raw/" # f <- file.path(tempdir(), "etosha-features.gpkg") # download.file(paste0(url, basename(f)), f) ## ----elephant-sfpath, echo = FALSE-------------------------------------------- # f <- "../data-raw/etosha-features.gpkg" ## ----elepaphant-sf------------------------------------------------------------ # pans <- read_sf(f, layer = "pans") %>% # st_transform(crs = st_crs(elephant_ud)) # # waterholes <- read_sf(f, layer = "waterholes") %>% # st_transform(crs = st_crs(elephant_ud)) # # park <- read_sf(f, layer = "etosha") %>% # st_transform(crs = st_crs(elephant_ud)) # # roads <- read_sf(f, layer = "roads") %>% # st_transform(crs = st_crs(elephant_ud)) ## ----elephant-pretty, fig.width = 6, fig.height = 3.5------------------------- # # visualize both distributions on a single map and add environmental data # elephant_map <- map_single(m3_distill, p3, lambda_i = -5) + # geom_sf(data = pans, alpha = 0.2, size = 0.15, color = "gray40") + # geom_sf(data = waterholes, size = 0.25) + # geom_sf(data = park, size = 3, fill = NA, color = alpha("gray60", 0.2)) + # geom_sf(data = park, size = 0.2, fill = NA, color = "gray20", linetype = 6) + # ggtitle("Two Elephants in Etosha National Park") # # # show the map # elephant_map ## ----elephant-save, eval = FALSE---------------------------------------------- # # save the map # ggsave(plot = elephant_map, # filename = "afrele_map_singles.png", # width = 6, # height = 3.5, # dpi = 600)