Type: | Package |
Title: | Introduction to Some Combinatorial Relations |
Version: | 0.1.0 |
Maintainer: | Anik Paul <paulanik2019@gmail.com> |
Description: | Determining the value of Stirling numbers of 1st kind and 2nd kind,references: Bóna,Miklós(2017,ISBN 9789813148840). |
License: | GPL-3 |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.1 |
Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) |
VignetteBuilder: | knitr |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2022-11-01 10:14:39 UTC; ANIK |
Author: | Anik Paul [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2022-11-01 15:20:26 UTC |
Prints the value of Stirling numbers of second kind
Description
Determining the Stirling number of second kind.
Usage
Stirling2(n, k)
Arguments
n |
the first parameter representing the number of elements in the set total. |
k |
the second parameter representing the number of groups to be formed. |
Details
Stirling numbers of second kind is a very useful term used in combinatorics denoting the number of all possible groups of size k from a set of size n.
Value
Stirling2: the determined value of Stirling numbers of second kind.
Author(s)
Anik Paul
References
Bóna,Miklós(2017,ISBN 9789813148840).
Examples
Stirling2(3,2)