## ----setup, include = FALSE--------------------------------------------------- library(dplyr) library(corrr) knitr::opts_chunk$set(collapse = TRUE, comment = "#>") ## ---- message = F, warning = F------------------------------------------------ library(corrr) d <- correlate(mtcars, quiet = TRUE) d ## ---- message=F, warning=F---------------------------------------------------- library(dplyr) # Filter rows to occasions in which cyl has a correlation of .7 or more with # another variable. d %>% filter(cyl > .7) # Select the mpg, cyl and disp columns (and term) d %>% select(term, mpg, cyl, disp) # Combine above in a single pipeline d %>% filter(cyl > .7) %>% select(term, mpg, cyl, disp) ## ---- warning = FALSE, message = FALSE---------------------------------------- # Compute mean of each column library(purrr) d %>% select(-term) %>% map_dbl(~ mean(., na.rm = TRUE)) ## ----------------------------------------------------------------------------- d %>% focus(mpg, cyl) ## ----------------------------------------------------------------------------- d %>% focus(mpg:drat, mirror = TRUE) %>% # Focus only on mpg:drat shave() %>% # Remove the upper triangle fashion() # Print in nice format ## ---- warning = FALSE--------------------------------------------------------- d %>% focus(mpg:drat, mirror = TRUE) %>% shave(upper = FALSE) %>% rplot() # Plot ## ---- warning = FALSE--------------------------------------------------------- d %>% focus(mpg:drat, mirror = TRUE) %>% rearrange(absolute = FALSE) %>% shave() %>% rplot()