## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo=FALSE, include=FALSE------------------------------------------------ library(data.table) library(magrittr) ## ----------------------------------------------------------------------------- d <- cstidy::generate_test_data() cstidy::set_csfmt_rts_data_v1(d) # Looking at the dataset d[] ## ----------------------------------------------------------------------------- d <- cstidy::generate_test_data()[1:5] cstidy::set_csfmt_rts_data_v1(d) # Looking at the dataset d[] # Smart assignment of time columns (note how granularity_time, isoyear, isoyearweek, date all change) d[1,isoyearweek := "2021-01"] d # Smart assignment of time columns (note how granularity_time, isoyear, isoyearweek, date all change) d[2,isoyear := 2019] d # Smart assignment of time columns (note how granularity_time, isoyear, isoyearweek, date all change) d[4:5,date := as.Date("2020-01-01")] d # Smart assignment fails when multiple time columns are set d[1,c("isoyear","isoyearweek") := .(2021,"2021-01")] d # Smart assignment of geo columns d[1,c("location_code") := .("norge")] d # Collapsing down to different levels, and healing the dataset # (so that it can be worked on further with regards to real time surveillance) d[, .(deaths_n = sum(deaths_n), location_code = "norge"), keyby=.(granularity_time)] %>% cstidy::set_csfmt_rts_data_v1(create_unified_columns = FALSE) %>% print() # Collapsing to different levels, and removing the class csfmt_rts_data_v1 because # it is going to be used in new output/analyses d[, .(deaths_n = sum(deaths_n), location_code = "norge"), keyby=.(granularity_time)] %>% cstidy::remove_class_csfmt_rts_data() %>% print() ## ----------------------------------------------------------------------------- cstidy::generate_test_data() %>% cstidy::set_csfmt_rts_data_v1() %>% summary() ## ----------------------------------------------------------------------------- cstidy::generate_test_data() %>% cstidy::set_csfmt_rts_data_v1() %>% cstidy::identify_data_structure("deaths_n") %>% plot()