## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- results = "hide", eval = FALSE------------------------------------------ # #Some examples of input files are included in the package # system.file("extdata", package = "dPCP") ## ---- results = "hide", eval = FALSE------------------------------------------ # #Show the content of sample table template # read.csv(system.file("extdata", "Template_sampleTable.csv", package = "dPCP"), # stringsAsFactors = FALSE, na.strings = c("NA", "")) # # #Copy the template to working directory # file.copy(system.file("extdata", "Template_sampleTable.csv", package = "dPCP"), getwd()) ## ---- results = "hide", eval = FALSE------------------------------------------ # library(dPCP) # # #Find path of sample table and location of reference and input files # sampleTable <- system.file("extdata", "Template_sampleTable.csv", # package = "dPCP") # # fileLoc <- system.file("extdata",package = "dPCP") # # #Lunch dPCP analysis # results <- dPCP(sampleTable, system = "bio-rad", file.location = fileLoc, # , eps = 200, minPts = 50, save.template = FALSE, rain = TRUE) ## ---- results = "hide", eval = FALSE------------------------------------------ # library(dPCP) # #Find path of sample table and location of reference and input files # sampleTable <- system.file("extdata", "Template_sampleTable.csv", # package = "dPCP") # # fileLoc <- system.file("extdata",package = "dPCP") # # #Read sample table file # sample.table <- read_sampleTable(sampleTable, system = "bio-rad", # file.location = fileLoc) # # #Read reference files # ref <- read_reference(sample.table, system = "bio-rad", # file.location = fileLoc) # # #Read samples files # samp <- read_sample(sample.table, system = "bio-rad", file.location = fileLoc) # # #Reference DBSCAN clustering # dbref <- reference_dbscan(ref, sample.table, save.template = FALSE) # # #Predict position of clusters centroid from reference DBSCAN results # cent <- centers_data(samp, sample.table,dbref) # # #Fuzzy c-means clustering # cmclus <- cmeans_clus(cent) # # #Rain classification. # rainclus <- rain_reclus(cmclus) # # #Quantification # quantcm <- target_quant(cmclus, sample.table) # quant <- target_quant(rainclus, sample.table) # # #Replicates pooling # rep.quant <- replicates_quant(quant, sample.table)