## ----global_options, include=FALSE-------------------------------------------- knitr::opts_chunk$set( fig.width = 5, # Larger figures (default is 3, only legend is visible) out.width = "100%" ) set.seed(2018) ## ----wmppp, warning=FALSE, message=FALSE-------------------------------------- library("dbmss") # Draw the coordinates of 10 points X <- runif(10) Y <- runif(10) # Draw the point types. PointType <- sample(c("A", "B"), size = 10, replace = TRUE) # Plot the point pattern. Weights are set to 1 ant the window is adjusted autoplot(wmppp(data.frame(X, Y, PointType))) ## ----paracou------------------------------------------------------------------ # Plot (second column of marks is Point Types) autoplot( paracou16, labelSize = expression("Basal area (" ~cm^2~ ")"), labelColor = "Species" ) ## ----m------------------------------------------------------------------------ autoplot( Mhat( paracou16, ReferenceType = "V. Americana", NeighborType = "Q. Rosea" ), main = "" ) ## ----------------------------------------------------------------------------- autoplot( KdEnvelope(paracou16, ReferenceType = "Q. Rosea", Global = TRUE), main = "" ) ## ----------------------------------------------------------------------------- # Calculate individual intertype M(distance) value ReferenceType <- "V. Americana" NeighborType <- "Q. Rosea" fvind <- Mhat( paracou16, r = c(0, 30), ReferenceType = ReferenceType, NeighborType = NeighborType, Individual = TRUE ) # Plot the point pattern with values of M(30 meters) p16_map <- Smooth( paracou16, fvind = fvind, distance = 30, # Resolution Nbx = 512, Nby = 512 ) par(mar = rep(0, 4)) plot(p16_map, main = "") # Add the reference points to the plot is.ReferenceType <- marks(paracou16)$PointType == ReferenceType points( x = paracou16$x[is.ReferenceType], y = paracou16$y[is.ReferenceType], pch = 20 ) # Add contour lines contour(p16_map, nlevels = 5, add = TRUE)