Title: | Providing Demographic Table with the P-Value, Standardized Mean Difference Value |
Version: | 0.1.0 |
Description: | The Demographic Table in R combines contingency table for categorical variables, mean and standard deviation for continuous variables. t-test, chi-square test and Fisher's exact test calculated the p-value of two groups. The standardized mean difference were performed with 95 % confident interval, and writing table into document file. |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
Imports: | officer, magrittr, MASS, stats |
RoxygenNote: | 6.1.1 |
Suggests: | testthat |
NeedsCompilation: | no |
Packaged: | 2019-01-05 00:14:28 UTC; loanrobinson |
Author: | Loan Robinson [aut, cre] |
Maintainer: | Loan Robinson <loankimrobinson@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2019-01-09 17:30:07 UTC |
smd value for categorical variables
Description
smd value for categorical variables
Usage
cat_smd(ntable, var, data)
Arguments
ntable |
propotion table of baseline categorical variable and group variable |
var |
baseline categorical variable |
data |
data |
Examples
set.seed(2018)
group <-round(abs(rnorm(500)*10),0) %% 2
cont_1 <-round(abs(rnorm(500)*10),0)
cat_multi_1 <-round(abs(rnorm(500)*10),0) %% 3
data_check <-data.frame(group, cont_1, cat_multi_1)
data_check$group <- factor(data_check$group, levels = c(0,1), labels = c("Control","Treatment"))
data_check$cat_multi_1 <- factor(data_check$cat_multi_1)
cat_smd(table(data_check$cat_multi_1, data_check$group),"cat_multi_1",data_check )
DemoGraphic table for categorical variables
Description
DemoGraphic table for categorical variables
Usage
cat_table(var, strata, data)
Arguments
var |
baseline variables |
strata |
group variable with 1 = treatment and 0 = control |
data |
data |
Examples
set.seed(2018)
group <-round(abs(rnorm(500)*10),0) %% 2
cont_1 <-round(abs(rnorm(500)*10),0)
cat_multi_1 <-round(abs(rnorm(500)*10),0) %% 3
data_check <-data.frame(group, cont_1, cat_multi_1)
data_check$group <- factor(data_check$group, levels = c(0,1), labels = c("Control","Treatment"))
data_check$cat_multi_1 <- factor(data_check$cat_multi_1)
cat_table("cat_multi_1","group",data_check )
smd value for continuous variable.
Description
smd value for continuous variable.
Usage
cont_smd(mean1, mean2, var1, var2)
Arguments
mean1 |
mean of a baseline variable in the treatment group. |
mean2 |
mean of a baseline variable in the control group. |
var1 |
variance a baseline variable in the treatment group. |
var2 |
variance of a baseline variable in the control group. |
Value
smd value
Examples
cont_smd(10,11,2,3)
DemoGraphic table for continuous variables
Description
DemoGraphic table for continuous variables
Usage
cont_table(var, strata, data)
Arguments
var |
variables |
strata |
group variable with 1 = treatment and 0 = control |
data |
data |
Value
mean, standard deviation of treatmant and control group, smd, and p value.
Examples
set.seed(2018)
group <-round(abs(rnorm(500)*10),0) %% 2
cont_1 <-round(abs(rnorm(500)*10),0)
cat_multi_1 <-round(abs(rnorm(500)*10),0) %% 3
data_check <-data.frame(group, cont_1, cat_multi_1)
data_check$group <- factor(data_check$group, levels = c(0,1), labels = c("Control","Treatment"))
data_check$cat_multi_1 <- factor(data_check$cat_multi_1)
cont_table("cont_1","group", data_check )
Demographic Table for continuous and categorical variables
Description
Demographic Table for continuous and categorical variables
Usage
demo_table(var, strata, data)
Arguments
var |
list of baseline variables |
strata |
group variable with 1 = treatment and 0 = control |
data |
data |
Examples
set.seed(2018)
group <-round(abs(rnorm(500)*10),0) %% 2
cont_1 <-round(abs(rnorm(500)*10),0)
cat_multi_1 <-round(abs(rnorm(500)*10),0) %% 3
data_check <-data.frame(group, cont_1, cat_multi_1)
data_check$group <- factor(data_check$group, levels = c(0,1), labels = c("Control","Treatment"))
data_check$cat_multi_1 <- factor(data_check$cat_multi_1)
demo_table(c("cont_1","cat_multi_1"),"group", data_check )
Mean, var function
Description
Mean, var function
Usage
get_mean(x)
Arguments
x |
variable |
Value
mean table
Examples
get_mean(round(abs(rnorm(500)*10),0))
chi square test to get expected value and p value
Description
chi square test to get expected value and p value
Usage
my.chi.sq(...)
Arguments
... |
variables |
Examples
set.seed(2018)
group <-round(abs(rnorm(500)*10),0) %% 2
cont_1 <-round(abs(rnorm(500)*10),0)
cat_multi_1 <-round(abs(rnorm(500)*10),0) %% 3
data_check <-data.frame(group, cont_1, cat_multi_1)
data_check$group <- factor(data_check$group, levels = c(0,1), labels = c("Control","Treatment"))
data_check$cat_multi_1 <- factor(data_check$cat_multi_1)
my.chi.sq(table(data_check$cat_multi_1, data_check$group))
fisher exact test to get p value if any cell in propotion table of expect value less than 5
Description
fisher exact test to get p value if any cell in propotion table of expect value less than 5
Usage
my.fisher(...)
Arguments
... |
variables |
Examples
set.seed(2018)
data_check <-data.frame(
group <-round(abs(rnorm(500)*10),0) %% 2,
cat_multi_1 <-round(abs(rnorm(500)*10),0) %% 3)
my.fisher(table(data_check$cat_multi_1, data_check$group))
write smd table or demographic table into docx file
Description
write smd table or demographic table into docx file
Usage
mydocx(smd_table, name)
Arguments
smd_table |
smd table or demo graphic table. |
name |
file name to save |
Examples
mydocx(data.frame(smd.value <- 3.4, smd.lo <- 1.1, smd.up <- 5.6),"smd_table")
Confident interval for smd
Description
Confident interval for smd
Usage
smd_ci(n1, n2, smd)
Arguments
n1 |
length of a baseline variable in the treatment group. |
n2 |
length of a baseline variable in the control group. |
smd |
smd value |
Value
vector of 95
Examples
smd_ci(10,12,0.3)
t.test to calculate p value
Description
t.test to calculate p value
Usage
## S3 method for class 'test.p.value'
t(...)
Arguments
... |
variables |
Value
p value