## ----"setup", include=FALSE---------------------------------------------- require("knitr") opts_knit$set(root.dir = ".") library(denoiSeq) ## ---- echo=TRUE---------------------------------------------------------- dim(ERCC) ## ---- echo=FALSE, results='asis'----------------------------------------- knitr::kable(head(ERCC, 4)) ## ---- echo=TRUE---------------------------------------------------------- ERCC <- ERCC[rowSums(ERCC) > 0, ] dim(ERCC) ## ---- echo=TRUE---------------------------------------------------------- reps <- list(A=c(1,2,3,4,5), B=c(6,7,8,9,10))#specifying the columns for each condition m <- dim(ERCC)[1] initvalues <- list(N_A = rep(1, m), N_B = rep(1, m), p = 0.0001, f = 0.01) stepsizes <- list(stepsizeN_A = rep(1, m), stepsizeN_B = rep(1, m) , stepsize_p = 5e+07, stepsize_f = 1e3) RD2 <- new("readsData", counts = ERCC, replicates = reps, initValues = initvalues, stepSizes = stepsizes) ## ---- echo=TRUE---------------------------------------------------------- steps <- 100#100 steps are just for illustration here. Atleast 5000 steps are adequate. BI2 <- denoiseq(RD2, steps) ## ---- echo=TRUE---------------------------------------------------------- rope = 0.5 rez2 <- results(BI2, steps, rope_limit = rope) ## ---- echo=FALSE--------------------------------------------------------- knitr::kable(head(rez2)) ## ---- echo=TRUE---------------------------------------------------------- samples <- getSamplesOf(BI2, "ERCC-00051", steps) acceptance_rate <- length(unique(samples)) / steps acceptance_rate ## ---- echo=TRUE, fig.show='hold'----------------------------------------- plot(samples, type="l", main = "History plot of ERCC-00051") AL <- acf(samples, main = "Auto lag plot of ERCC-00051", lag.max = 30, type = c("correlation"), plot = T) ## ---- echo=TRUE---------------------------------------------------------- sessionInfo()