dependentsimr: Simulate Omics-Scale Data with Dependency

Using a Gaussian copula approach, this package generates simulated data mimicking a target real dataset. It supports normal, Poisson, empirical, and 'DESeq2' (negative binomial with size factors) marginal distributions. It uses an low-rank plus diagonal covariance matrix to efficiently generate omics-scale data. Methods are described in: Yang, Grant, and Brooks (2025) <doi:10.1101/2025.01.31.634335>.

Version: 1.0.0.0
Depends: R (≥ 4.2)
Imports: rlang (≥ 1.0.0)
Suggests: DESeq2 (≥ 1.40.0), S4Vectors (≥ 0.44.0), SummarizedExperiment (≥ 1.36.0), MASS (≥ 7.3), corpcor (≥ 1.6.0), testthat (≥ 3.0.0), Matrix (≥ 1.7), sparsesvd (≥ 0.2), knitr (≥ 1.50), rmarkdown, BiocManager, remotes, tidyverse (≥ 2.0.0)
Published: 2025-07-23
DOI: 10.32614/CRAN.package.dependentsimr
Author: Thomas Brooks ORCID iD [aut, cre, cph]
Maintainer: Thomas Brooks <tgbrooks at gmail.com>
License: MIT + file LICENSE
NeedsCompilation: no
Materials: NEWS
CRAN checks: dependentsimr results

Documentation:

Reference manual: dependentsimr.html , dependentsimr.pdf
Vignettes: simulate_data (source, R code)

Downloads:

Package source: dependentsimr_1.0.0.0.tar.gz
Windows binaries: r-devel: dependentsimr_1.0.0.0.zip, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): dependentsimr_1.0.0.0.tgz, r-oldrel (x86_64): dependentsimr_1.0.0.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=dependentsimr to link to this page.