## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- message=FALSE, warning=FALSE, results = "hide", eval=FALSE-------------- # library(devtools) # devtools::install_github("mbraccini/diffeRenTES") ## ----setup-------------------------------------------------------------------- library(diffeRenTES) library(BoolNet) ## ---- message=FALSE, warning=FALSE, results = "hide",echo=FALSE--------------- set.seed(333) ## ---- warning=FALSE----------------------------------------------------------- net <- BoolNet::generateRandomNKNetwork(10, 2) attractors <- BoolNet::getAttractors(net) # Attractors Transition Matrix computation ATM <- getATM(net, attractors, MAX_STEPS_TO_FIND_ATTRACTORS = 100) # ATM structure in matrix format. # a1, a2, etc. refer to the attractors found. print(ATM$ATM) # No. perturbations that have not reach another attractor within the provided MAX_STEPS_TO_FIND_ATTRACTORS print(ATM$lostFLips) ## ---- warning=FALSE----------------------------------------------------------- #TESs computation TESs <- getTESs(ATM) #Retrieve the computed TESs print(TESs$TES) #And the noise thresholds at which they emerge. print(TESs$thresholds) ## ----message=FALSE, warning=FALSE,results = "hide"---------------------------- # Saving the TES-based differentiation tree into a file saveDifferentiationTreeToFile(TESs, file.path(tempdir(), "example.svg"))