## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # install.packages("eDITH") ## ----eval=FALSE--------------------------------------------------------------- # devtools::install_github("lucarraro/eDITH") ## ----overview, echo=FALSE, fig.cap="Flowchart for the choice of covariates used to fit the eDITH model.", out.width = '90%'---- knitr::include_graphics("flowchart_cov.png") ## ----eval=FALSE--------------------------------------------------------------- # # Extract river from DEM # river <- rivnet::extract_river(outlet=c(637478,237413), # EPSG=21781, #CH1903/LV03 coordinate system # ext=c(6.2e5,6.6e5,2e5,2.5e5), # z=9) # # # Aggregate river - default thrA and maxReachLength = 2500 m # river <- rivnet::aggregate_river(river, maxReachLength = 2500) # # # Hydraulic data: width = 8 m, discharge = 15 m3/s at the outlet # hydrodata <- data.frame(data = c(8, 15), # type = c("w", "Q"), # node = river$AG$outlet*c(1, 1)) # # # Assign hydraulic variables across the river network # river <- rivnet::hydro_river(hydrodata, river) # # # Attribute landcover classes as covariates # r1 <- terra::rast(system.file("extdata/landcover.tif", # package = "rivnet")) # river <- rivnet::covariate_river(r1, river) # ## ----eval=FALSE--------------------------------------------------------------- # data(dataC) ## ----eval=FALSE--------------------------------------------------------------- # dataC[which(dataC$ID==2),] # #> ID values # #> 1 2 0.000000e+00 # #> 25 2 1.037331e-12 # #> 49 2 8.176798e-13 ## ----eval=FALSE--------------------------------------------------------------- # sites <- unique(dataC$ID) # values <- numeric(length(sites)) # for (ind in 1:length(sites)){ # s <- sites[ind] # values[ind] <- mean(dataC$values[dataC$ID==s]) # } # # plot(river) # rivnet::points_colorscale(river$AG$X[unique(dataC$ID)], river$AG$Y[unique(dataC$ID)], # values) # title("Mean observed DNA concentration [mol m-3]") # ## ----map2, echo=FALSE, out.width = '80%'-------------------------------------- knitr::include_graphics("map2.png") ## ----eval=FALSE--------------------------------------------------------------- # covariates <- data.frame(urban = river$SC$locCov$landcover_1, # agriculture = river$SC$locCov$landcover_2, # forest = river$SC$locCov$landcover_3, # elev = river$AG$Z, # log_drainageArea = log(river$AG$A)) # ## ----eval=FALSE--------------------------------------------------------------- # set.seed(1) # out.bt.cov <- run_eDITH_BT(dataC, river, covariates) # ## ----eval=FALSE--------------------------------------------------------------- # set.seed(1) # out.bt.aem <- run_eDITH_BT(dataC, river) # ## ----eval=FALSE--------------------------------------------------------------- # set.seed(27) # out.opt.aem <- run_eDITH_optim(dataC, river, n.AEM = 10, # n.attempts = 1) ## ----eval=FALSE--------------------------------------------------------------- # plot(out.opt.aem$C[dataC$ID], dataC$values, # xlim=c(0,8e-12), ylim=c(0, 8e-12), asp=1, # xlab = "Modelled concentration [mol m-3]", # ylab = "Observed concentration [mol m-3]") # abline(0,1) ## ----Cobs, echo=FALSE, out.width = '80%'-------------------------------------- knitr::include_graphics("Cobs.png") ## ----eval=FALSE--------------------------------------------------------------- # plot(river, out.opt.aem$C, colLevels=c(0, max(values), 1000), addLegend = FALSE, # colPalette = hcl.colors(1000, "Reds 3", rev=T)) # rivnet::points_colorscale(river$AG$X[unique(dataC$ID)], river$AG$Y[unique(dataC$ID)], # values) # title("DNA concentration [mol m-3]") ## ----mapC, echo=FALSE, out.width = '80%'-------------------------------------- knitr::include_graphics("mapC.png") ## ----eval=FALSE--------------------------------------------------------------- # plot(river, out.opt.aem$p) # title('DNA production rate [mol m-2 s-1]') ## ----mapp, echo=FALSE, out.width = '80%'-------------------------------------- knitr::include_graphics("mapp.png") ## ----eval=FALSE--------------------------------------------------------------- # plot(river, out.opt.aem$probDet) # title('Detection probability') ## ----mappD, echo=FALSE, out.width = '80%'------------------------------------- knitr::include_graphics("mappD.png")