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+.eam_summarise_by_spec
Add two summarise_by specs together

Description
S3 method for the + operator to combine two ‘eam_summarise_by_spec* objects into a single spec
that will apply both operations.
Usage
## S3 method for class 'eam_summarise_by_spec'
el + e2
Arguments

el First eam_summarise_by_spec or eam_summarise_by_tbl object

e2 Second eam_summarise_by_spec or eam_summarise_by_tbl object

Value

A combined eam_summarise_by_spec object

+.eam_summarise_by_tbl
Join two eam_summarise_by_tbl objects

Description
S3 method for the + operator to join two summary tables created by summarise_by. Tables must
have identical .wider_by attributes to be joined.
Usage
## S3 method for class 'eam_summarise_by_tbl'
el + e2
Arguments

el First eam_summarise_by_tbl object

e2 Second eam_summarise_by_tbl object

Value

A joined data frame with class "eam_summarise_by_tbl", preserving the .wider_by attribute from
the input tables
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abc_posterior_bootstrap
Bootstrap resample ABC posterior samples

Description

Bootstrap resample ABC posterior samples

Usage

abc_posterior_bootstrap(abc_result, n_samples, replace = TRUE)

Arguments
abc_result An abc object from abc
n_samples Number of bootstrap samples to draw (default 1000)
replace Logical, whether to sample with replacement (default TRUE)
Value

Data frame of bootstrapped parameter values

Examples

# Load an example abc output, you should generate it by applying ABC to your data

# check abc::abc for details on fitting ABC models

rdm_minimal_example <- system.file("”extdata”, "rdm_minimal”, package = "eam”

abc_model <- readRDS(file.path(rdm_minimal_example, "abc"”, "abc_neuralnet_model.rds"))

# Bootstrap resample posterior parameters
posterior_params <- abc_posterior_bootstrap(
abc_model,
n_samples = 100

)

# View the first few rows of the bootstrapped posterior parameters
head(posterior_params)
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abc_postpr ABC model comparison wrapper

Description

Wrapper function for postpr to facilitate model comparison. This function simplifies the process of
comparing multiple models using ABC by automatically stacking summary statistics and creating
model indices.

Usage
abc_postpr(sumstats = list(), target, ...)
Arguments
sumstats A named list of summary statistics matrices from different models. Each ele-
ment should be a matrix or data frame with the same columns.
target Target summary statistics from observed data (vector or matrix)
Additional arguments passed to postpr
Value

An object of class "postpr" from postpr

Examples

# Load pre-computed ABC input for model comparison

# This example compares the same model to itself for demonstration
rdm_minimal_example <- system.file("extdata”, "rdm_minimal”, package = "eam")
abc_input <- readRDS(file.path(rdm_minimal_example, " "abc_input.rds"))

n

abc”,

# Compare two models using their summary statistics
# In practice, create different abc_input objects for different models:
# abc_input_1 <- build_abc_input(..., simulation_summary = sim_summary_1, ...)
# abc_input_2 <- build_abc_input(..., simulation_summary = sim_summary_2, ...)
postpr_result <- abc_postpr(
sumstats = list(modell = abc_input$sumstat, model2 = abc_input$sumstat),
target = abc_input$target,
tol = 0.5,
method = "rejection”

)

# View model comparison results
summary (postpr_result)
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abc_resample ABC with resampling

Description

Performs ABC inference with resampling to assess stability and uncertainty. Each iteration draws a
random sample from the simulation pool and runs ABC, producing multiple posterior estimates for
comparison.

Usage

abc_resample(
target,
param,
sumstat,
n_iterations,
n_samples,
replace = FALSE,

)

Arguments
target Target summary statistics from observed data
param Parameter values matrix or data frame
sumstat Summary statistics matrix or data frame

n_iterations  Number of resample iterations
n_samples Number of samples to draw in each iteration
replace Logical, whether to sample with replacement (default FALSE)

Additional arguments passed to abc::abc

Value

A list of length n_iterations, where each element is an object of class abc returned by abc. Each
list element contains the ABC posterior for one bootstrap iteration, allowing assessment of stability
and uncertainty in parameter estimates.

Examples

# Load ABC input data from example simulation
abc_input <- readRDS(
system.file("extdata”, "rdm_minimal”,

)

"

abc

n
’

"abc_input.rds”, package = "eam”

# Perform ABC resampling
results <- abc_resample(
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target = abc_input$target,
param = abc_input$param,
sumstat = abc_input$sumstat,
n_iterations = 2,

n_samples = 2,

tol = 0.5,

method = "rejection”

)

# check the abc results
str(results)

build_abc_input Build input for Approximate Bayesian Computation (ABC)

Description

Prepares simulation output, summary statistics, and target data for ABC analysis using the abc
package. Extracts parameters and summary statistics from simulation results and formats them into
matrices suitable for ABC parameter estimation.

Usage

build_abc_input(simulation_output, simulation_summary, target_summary, param)

Arguments

simulation_output
A eam_simulation_output object containing that is from run_simulation or
load_simulation_output.

simulation_summary
A data frame containing summary statistics for each simulated condition. Should
have a ’condition_idx’ column and be created by summarise_by.

target_summary A data frame containing target summary statistics to match against simulation
results. Should have the same summary statistic columns as simulation_summary
(excluding *wider_by’ columns).

param aracter vector of parameter names to extract from simulation_output. These
Ch 1 t fp 1 t tract fi lat tput. Th
parameters will be used as the parameter space for ABC estimation.

Details

This function provides a streamlined workflow for preparing ABC inputs, but it requires that all
components be constructed using this package’s functions. Specifically, simulation_output must
be created by run_simulation or load_simulation_output, and both simulation_summary and
target_summary must be generated using summarise_by. If your data originates from external
sources or custom pipelines, you should manually construct the ABC input list instead, ensuring
proper matrix formatting and column alignment as expected by abc: : abc.
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Value

A list with components suitable for abc: : abc

Required format for summary statistics

Both simulation_summary and target_summary must be created using summarise_by. This en-
sures consistent column naming and data structure required for ABC analysis. See summarise_by
for details on generating properly formatted summaries, and map_by_condition for typical work-
flow examples. If you want more flexibility in summary statistic calculation, you can manually
construct the ABC input list. It is not necessary to use this function if you are familiar with the abc
package.

Examples

# Load the example dataset

rdm_minimal_example <- system.file("extdata”, "rdm_minimal”, package = "eam")
sim_output <- load_simulation_output(file.path(rdm_minimal_example, "simulation"))
obs_df <- read.csv(file.path(rdm_minimal_example, "observation”, "observation_data.csv"))

# Define summary statistics pipeline
summary_pipe <- summarise_by(

.by = c("condition_idx"),

rt_mean = mean(rt)

)

# Calculate summary statistics for simulation and observation
sim_summary <- map_by_condition(

sim_output,

.progress = FALSE,

.parallel = FALSE,

function(cond_df) {

summary_pipe(cond_df)

}

)

obs_summary <- summary_pipe(obs_df)

# Build ABC input

abc_input <- build_abc_input(
simulation_output = sim_output,
simulation_summary = sim_summary,
target_summary = obs_summary,
param = c("V_beta_1", "V_beta_group”)

)

# Perform ABC parameter estimation using rejection method
abc_rejection_model <- abc::abc(
target = abc_input$target,

param = abc_input$param,
sumstat = abc_input$sumstat,
tol = 0.5,

method = "rejection”
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build_abi_input Build input for Amortized Bayesian Inference (ABI)

Description

Prepares simulation output for Amortized Bayesian Inference (ABI) analysis using the NeuralEstimators
package. Extracts parameters and summary statistics from simulation results, splits data into train-
ing and validation sets, and formats them into matrices suitable for neural network training.

Usage

build_abi_input(
simulation_output,

theta,
Z,
train_ratio = 0.8,
rank_levels = NULL
)
Arguments

simulation_output
A eam_simulation_output object from run_simulation or load_simulation_output.

theta Character vector of parameter names to extract from simulation_output. These
parameters will be used as the target variables for inference.

Z Character vector of summary statistic column names to extract from the simula-

non "non

tion output dataset (e.g., "rt", "item_idx", "choice").

train_ratio Numeric value between 0 and 1 specifying the proportion of conditions to use
for training (default: 0.8).

rank_levels Numeric vector specifying which rank indices to include. If NULL (default),
uses all ranks from 1 to n_items from simulation config.

Details

This function provides a streamlined workflow for preparing ABI inputs. It requires that simulation_output
be created by run_simulation or load_simulation_output. The function automatically handles
missing trials and ranks by filling with zeros to ensure complete data matrices.

The output format is optimized for the abi package’s training functions, with parameters formatted
as matrices (each column is a condition) and summary statistics formatted as lists of matrices (one
per condition, with trials as columns).
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Value
A list with components suitable for abi package training:

theta_train Matrix of training parameters (parameters x conditions)
theta_val Matrix of validation parameters (parameters x conditions)
Z_train List of matrices, one per training condition (ranks*Z x trials)
Z_val List of matrices, one per validation condition (ranks*Z X trials)
train_idx Vector of condition indices used for training

val_idx Vector of condition indices used for validation

train_ratio The training ratio used

rank_levels The rank levels included in Z matrices

Examples

# Load the example dataset
rdm_minimal_example <- system.file("extdata”, "rdm_minimal”, package = "eam")
sim_output <- load_simulation_output(file.path(rdm_minimal_example, "simulation”))

# build the ABI input
abi_input <- build_abi_input(
sim_output,
c(
"V_beta_1",
"V_beta_group”
),
c(
"item_idx",
et
"choice”
)
)

# view the structure of the ABI input
str(abi_input)

## Not run:
# Example of using the ABI input for training
# (requires NeuralEstimators package and build your estimator first, see our tutorials)
train(
estimator,
theta_train = abi_input$theta_train,
theta_val = abi_input$theta_val,
Z_train = abi_input$Z_train,
Z_val = abi_input$Z_val,
epochs = 500,
stopping_epochs = 200
)

## End(Not run)
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load_simulation_output
Rebuild eam_simulation_output from an existing output directory

Description

This function reconstructs a eam_simulation_output object from a previously saved simulation out-
put directory.

Usage

load_simulation_output (output_dir)

Arguments

output_dir The directory containing the simulation results and config

Value

A eam_simulation_output object

Examples

# Load simulation output from package data
sim_output_path <- system.file(
"extdata”, "rdm_minimal”, "simulation”,
package = "eam”
)

sim_output <- load_simulation_output(sim_output_path)

# Access the configuration
sim_output$simulation_config

# Access the dataset (check arrow documentation for working with the dataset)
dataset <- sim_output$open_dataset()

map_by_condition Map a function by condition across simulation output chunks

Description

This function processes simulation output by gathering all chunks, iterating through them one by
one, filtering and collecting data by chunk, then applying a user-defined function by condition
within each chunk.
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Usage

map_by_condition(
simulation_output,
.f,
.combine = dplyr::bind_rows,
.parallel = NULL,
.n_cores = NULL,
.progress = FALSE

Arguments

simulation_output
A eam_simulation_output object containing the dataset and configuration

.f A function to apply to each condition’s data. The function should accept a data
frame representing one condition’s results

Additional arguments passed to the function .f

.combine Function to combine results (default: dplyr::bind_rows)
.parallel Logical or NULL.
.n_cores Integer. Number of CPU cores to use for parallel processing. If NULL, uses
detectCores() - 1. Only used when .parallel = TRUE.
.progress Logical, whether to show a progress bar (default: FALSE)
Details

This function handles out-of-core computation automatically using Apache Arrow, so you don’t
need to understand Arrow internals. It loads data chunk by chunk to avoid memory issues with
large simulations.

If you prefer to manually work with the raw Arrow dataset, you can access it via simulation_output$open_dataset(),
which returns an Arrow Dataset object. You can then use dplyr verbs to filter and query before call-
ing dplyr::collect() to load data into memory.

Value

A list containing the results of applying .f to each condition, with names corresponding to condition
indices

Examples

# Load simulation output

sim_output_path <- system.file(
"extdata”, "rdm_minimal”, "simulation”,
package = "eam”

)

sim_output <- load_simulation_output(sim_output_path)
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# Define a summary pipeline
summary_pipe <- summarise_by(

.by = c¢("condition_idx"),

rt_mean = mean(rt),

rt_quantiles = quantile(rt, probs = c(0.1, 0.5, 0.9))
)

# Apply function to each condition
sim_sumstat <- map_by_condition(
sim_output,
.progress FALSE,
.parallel = FALSE,
function(cond_df) {
summary_pipe(cond_df)

b
)

new_simulation_config Create a new simulation configuration

Description

This function creates a new eam simulation configuration object that contains all parameters needed
to run a simulation.

Usage

new_simulation_config(
prior_params = list(),
prior_formulas = list(),
between_trial_formulas = list(),
item_formulas = list(),
n_conditions_per_chunk
n_conditions,
n_trials_per_condition,
n_items,
max_reached = n_items,
max_t,
dt = 0.001,
noise_mechanism = "add",
noise_factory = NULL,
model = "ddm”,
parallel = FALSE,
n_cores = NULL,
rand_seed = NULL

NULL,
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Arguments

prior_params A list or data frame of initial values for prior

prior_formulas A list of formulas defining prior distributions for condition-level parameters
between_trial_formulas
A list of formulas defining between-trial parameters

item_formulas A list of formulas defining item-level parameters
n_conditions_per_chunk

Number of conditions to process per chunk (optional, typically does not need to
be set. It determine the storage and in-memory size of each chunk, if you find
memory issues, try reducing this number)

n_conditions Total number of conditions to simulate
n_trials_per_condition
Number of trials per condition

n_items Number of items per trial

max_reached Maximum number of items that can be recalled (default: n_items)
max_t Maximum simulation time

dt Time step size (default: 0.001)

noise_mechanism
Noise mechanism ("add", "mult_evidence", or "mult_t", default: "add")

noise_factory Function that creates noise functions.

model Model name or backend names (e.g., "ddm", "rdm", "lca")
parallel Whether to run in parallel (default: FALSE)
n_cores Number of cores for parallel processing (default: NULL, auto-detect)
rand_seed Random seed for parallel processing (default: NULL)
Details

This function only creates the configuration object and does not run the simulation. To actually
execute the simulation, you must pass the returned configuration object to run_simulation.

Supported Models:

This package supports three evidence accumulation models. The appropriate backend is automati-
cally selected based on the model parameter and the parameters defined in your formulas.

DDM (Drift Diffusion Model) Models evidence accumulation towards a single upper threshold.
Items either reach the threshold and are recalled, or time out.

Required parameters (must appear in prior_formulas, between_trial_formulas, or item_formulas):
* A - Upper decision boundary/threshold
¢ V - Drift rate (evidence accumulation rate)
 Z - Starting point of evidence
¢ ndt - Non-decision time

Set model = "ddm"”
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RDM (Racing Diffusion Model) Models multiple racing evidence accumulators, each with upper
and lower thresholds for binary decisions (correct/incorrect).

Required parameters:
* A_upper - Upper decision boundary (correct response)
* A_lower - Lower decision boundary (incorrect response)
¢ V - Drift rate
7 - Starting point of evidence
¢ ndt - Non-decision time

Setmodel = "rdm”. Note: If you set model = "ddm"” but define A_upper instead of A, the model
will automatically switch to RDM.

LCA (Leaky Competing Accumulator) Models competitive evidence accumulation with leakage
and mutual inhibition between accumulators.

Required parameters:
¢ A - Decision threshold
* V - Input strength/drift rate
 Z - Starting point of evidence
* ndt - Non-decision time
* beta - Self-excitation/leak parameter
¢ k - Lateral inhibition strength
Set model = "1ca”
LFM (Lévy Flight Model) Uses the same parameters as DDM. See DDM above.
Set model = "1fm"

LBA (Linear Ballistic Accumulator) Uses the same parameters as RDM. See RDM above.
Set model = "1ba”

Note: All required parameters must be defined at least once across prior_params, prior_formulas,
between_trial_formulas, and item_formulas.

Parameter Hierarchy and Formula Evaluation:
The simulation uses a hierarchical parameter system with sequential formula evaluation, allowing
later formulas to reference earlier ones:

1. prior_params - Initial constant values available to all formulas

2. prior_formulas - Evaluated once per condition, can reference prior_params. Use for condition-
level parameters that vary across conditions.

3. between_trial_formulas - Evaluated once per trial within each condition. Can reference both
prior_params and variables from prior_formulas. Use for trial-level variability.

4. item_formulas - Evaluated once per item within each trial. Can reference all previous param-
eters. Use for item-specific parameters.

Using Distributions:

You can use the distributional package to define random parameters. For example:

e A~distributional::dist_uniform(@.5, 2.0) - Uniform distribution
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e V_condition ~distributional::dist_normal(1.0, @.2) - Normal distribution
e sigma ~ 0.5 - Constant value

e V~distributional::dist_normal(V_condition, sigma) - Reference earlier parameters

Each formula is evaluated sequentially, so you can build complex parameter dependencies. For
instance, you might define a base drift rate V in prior_formulas, then add trial-level noise in
between_trial_formulas, and finally scale by item position in item_formulas.

Value

An S3 object of class eam_simulation_config containing validated simulation parameters. This
object should be passed to run_simulation to execute the simulation.

Examples

# Define formulas for the simulation
prior_formulas <- list(
V ~ distributional::dist_uniform(@.1, 1.0),
ndt ~ 0.3,
noise_coef ~ 1

)
between_trial_formulas <- list()

item_formulas <- list(
A_upper ~ 1,
A_lower ~ -1,
V-~V

)

# Define noise factory
noise_factory <- function(context) {
noise_coef <- context$noise_coef
function(n, dt) {
noise_coef * rnorm(n, mean = @, sd = sqrt(dt))
}
3

# Create configuration
config <- new_simulation_config(
prior_formulas = prior_formulas,
between_trial_formulas = between_trial_formulas,
item_formulas = item_formulas,
n_conditions = 10,
n_trials_per_condition = 10,
n_items = 5,
max_reached = 5,

max_t = 10,
dt = 0.01,
noise_mechanism = "add"”,

noise_factory = noise_factory,
model = "ddm",
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parallel = FALSE
)

# print the config
config

# Run simulation
sim_output <- run_simulation(config)
sim_output

plot_accuracy Plot accuracy comparison between posterior and observed data

Description

Visualizes accuracy metrics comparing posterior simulation results with observed data. Creates
side-by-side bar plots for easy comparison across conditions.

Usage

plot_accuracy(
simulated_output,
observed_df,
x = "item_idx",
facet_x = c(),
facet_y = c()

Arguments

simulated_output
Posterior simulation output from run_simulation()

observed_df Observed data frame
X Variable for x-axis (default: "item_idx")
facet_x Variables for faceting columns
facet_y Variables for faceting rows
Value
A ggplot2 object
Examples

# Load posterior simulation output and observed data

base_dir <- system.file("extdata”, "rdm_minimal”, package = "eam")

post_output <- load_simulation_output(file.path(base_dir, "abc"”, "posterior”, "neuralnet"))
obs_df <- read.csv(file.path(base_dir, "observation”, "observation_data.csv"))
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# Plot accuracy comparison between posterior and observed data
# The plot shows side-by-side bars comparing hit rates or accuracy
plot_accuracy(

post_output,

obs_df,

facet_x = c("group”)

)

plot_cv_pair_correlation
Plot CV parameter pair correlations

Description

Create a matrix of pairwise plots for cross-validation parameter estimates, including scatter plots
with fitted trends, rank correlations, and marginal distributions.

Usage

plot_cv_pair_correlation(data, ...)

## S3 method for class 'cv4abc'

plot_cv_pair_correlation(data, ...)
Arguments
data A cv4abc object containing true parameters and cross-validated estimates.

Additional arguments:
interactive Logical; whether to pause between tolerance levels and wait for
input

Value

Invisibly returns ‘NULL*. Called for its side effect of producing plots.

See Also

plot_cv_pair_correlation.cv4abc

Examples

# Load CV output from saved file

cv_file <- system.file(
"extdata”, "rdm_minimal”,
package = "eam”

)

abc_neuralnet_cv <- readRDS(cv_file)

n ” n n

abc”, "cv", "neuralnet.rds”,
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# Plot parameter pair correlations
plot_cv_pair_correlation(abc_neuralnet_cv)

plot_cv_recovery Plot CV parameter recovery

Description

Visualize parameter recovery from cross-validation results, showing estimated vs. true parameter
values and residual distributions for each parameter.

Usage

plot_cv_recovery(data, ...)

## S3 method for class 'cv4abc'

plot_cv_recovery(data, ...)
Arguments
data A cv4abc object containing true parameters and cross-validated estimates.

Additional arguments:

n_rows Integer; number of rows in the plot grid (default: 3)

n_cols Integer; number of columns in the plot grid, multiplied by 2 for paired
plots (default: 1)

method Character; smoothing method for geom_smooth (default: "Im")
formula Formula; used in geom_smooth (default: y ~ x)

resid_tol Numeric; quantile threshold for filtering residuals by absolute value.
If specified, only observations with residuals below this quantile are plotted
(default: NULL, no filtering)

interactive Logical; whether to pause between pages and wait for user input
(default: FALSE)

Value

Invisibly returns ‘NULL‘. Called for its side effect of producing plots.

See Also

plot_cv_recovery.cv4abc
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Examples

# Load CV output from saved file

cv_file <- system.file(
"extdata”, "rdm_minimal”,
package = "eam”

)

abc_neuralnet_cv <- readRDS(cv_file)

" " n n

abc”, "cv"”, "neuralnet.rds”,

# Plot parameter recovery
plot_cv_recovery(
abc_neuralnet_cv,

n_rows = 2,
n_cols =1,
resid_tol = 0.99

plot_posterior_parameters
Plot parameter posterior distributions

Description

Plotting posterior distributions (and optionally prior distributions) from ABC results.

Usage

plot_posterior_parameters(data, ...)

## S3 method for class 'abc'

plot_posterior_parameters(data, abc_input = NULL, ...)
Arguments
data An abc object containing posterior samples in adj.values or unadj.values.

Additional arguments:

n_rows Integer; number of rows in the plot grid (default: 2)

n_cols Integer; number of columns in the plot grid (default: 2)

interactive Logical; whether to pause between pages and wait for input
abc_input Optional abc_input object containing prior samples for comparison. If provided,

prior distributions are shown as red histograms and posterior distributions as
blue density curves.
Details
The plots use the following visual encoding:

* Posterior distributions: blue density curves

* Prior distributions (if provided): red histograms with transparency
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Value

Invisibly returns ‘NULL‘. Called for its side effect of producing plots.

See Also

plot_posterior_parameters.abc

Examples

# Load ABC output from saved file

abc_file <- system.file(
"extdata”, "rdm_minimal”,
package = "eam"

)

abc_rejection_model <- readRDS(abc_file)

n n

abc”, "abc_rejection_model.rds”,

# Load ABC input for prior comparison

abc_input_file <- system.file(
"extdata”, "rdm_minimal”, "
package = "eam”

)

abc_input <- readRDS(abc_input_file)

"

abc”, "abc_input.rds”,

# Plot posterior distributions with prior comparison
plot_posterior_parameters(abc_rejection_model, abc_input)

plot_resample_forest  Plot resample forest plots

Description

Create forest plots showing parameter ranges across resample iterations. Each iteration is displayed
as a horizontal line with quantile intervals.

Usage
plot_resample_forest(
data,
n_rows = 2,
n_cols = 2,

interactive = FALSE,
ci_level = 0.95
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Arguments
data List of abc results from abc_resample
N_rows Number of rows in plot grid (default 2)
n_cols Number of columns in plot grid (default 2)

interactive Whether to pause between pages (default FALSE)

ci_level quantile intervals (default 0.95 for 95% interval)

Value

No return value, called for side effects (plotting). Creates forest plots displayed in the graphics
device.

Examples

# Load ABC input data from example simulation
abc_input <- readRDS(
system.file("extdata”, "rdm_minimal”,

)

n n

abc”, "abc_input.rds”, package = "eam")

# Perform ABC resampling
results <- abc_resample(
target = abc_input$target,
param = abc_input$param,
sumstat = abc_input$sumstat,
n_iterations = 100,
n_samples = 100,
tol = 0.5,
method = "rejection”

)

# plot forest plots showing parameter ranges
plot_resample_forest(results, ci_level = 0.95)

plot_resample_medians Plot resample median distributions

Description

Plot density distributions of parameter medians across resample iterations.

Usage

plot_resample_medians(data, n_rows = 2, n_cols = 2, interactive = FALSE)
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Arguments
data List of abc results from abc_resample
N_rows Number of rows in plot grid (default 2)
n_cols Number of columns in plot grid (default 2)
interactive Whether to pause between pages (default FALSE)
Value

No return value, called for side effects (plotting). Creates density plots displayed in the graphics
device.

Examples

#

Load ABC input data from example simulation

abc_input <- readRDS(

)

" n

system.file("extdata”, "rdm_minimal”,

abc”,

# Perform ABC resampling
results <- abc_resample(
target = abc_input$target,

"abc_input.rds”, package = "eam")

param = abc_input$param,
sumstat = abc_input$sumstat,

n_iterations =

100,

n_samples = 100,

tol = 0.5,

method = "rejection”

)

# plot the resample medians for each parameter
plot_resample_medians(results)

plot_rt

Plot reaction time distributions

Description

Visualize reaction time distributions from your model predictions. Overlay observed experimental

data for reference.

Usage

plot_rt(simulated_output, observed_df, facet_x = c("item_idx"), facet_y = c())
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Arguments

simulated_output
Output from run_simulation containing posterior predictions

observed_df Your observed data as a data frame

facet_x Variables to split plots horizontally. Default is "item_idx" to show separate
plots for each item

facet_y Variables to split plots vertically. Default is none (c())

Details

Posterior predictions are first summarized to their median RT within each condition and facet group
before plotting. This provides a representative estimate from the posterior distribution rather than
pooling all individual trial-level predictions.

Value

A plot showing predicted RT distributions (blue), with observed data (red) if provided

Examples

# Load example posterior simulation output

post_output_path <- system.file(
"extdata”, "rdm_minimal”, "abc"”, "posterior”, "neuralnet”,
package = "eam”

)

post_output <- load_simulation_output(post_output_path)

# Load example observed data

obs_file <- system.file(
"extdata”, "rdm_minimal”, "observation”, "observation_data.csv”,
package = "eam"

)

obs_df <- read.csv(obs_file)

# Plot RT distributions by item
plot_rt(post_output, obs_df, facet_x = c("item_idx"))

# Plot RT distributions by item and group
plot_rt(

post_output,

obs_df,

facet_x = c("item_idx"),

facet_y = c("group”)
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print.eam_simulation_config
Print method for eam simulation configuration

Description

Print method for eam simulation configuration

Usage
## S3 method for class 'eam_simulation_config'
print(x, ...)
Arguments
X A eam_simulation_config object
Additional arguments (ignored)
Value

Invisibly returns the input object

run_simulation Run a simulation with specified configuration

Description

This function runs a complete simulation based on the provided eam_simulation_config object,
which is generated by the new_simulation_config function.

Usage

run_simulation(config, output_dir = NULL)

Arguments
config A eam_simulation_config object containing all simulation parameters, you should
use new_simulation_config to create one.
output_dir The directory to save out-of-core results (optional, will use temp directory if not

provided)
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Details

This function uses an out-of-core approach to handle potentially large simulation results. Instead of
returning a data frame directly, it persists the data to disk and returns an eam_simulation_output
object that contains metadata and file system paths.

To access the simulation data, use the following methods on the returned object:

* open_dataset() - Returns an Arrow Dataset containing the simulation results, e.g. sim_output$open_dataset()

* open_evaluated_conditions() - Returns an Arrow Dataset containing the evaluated condi-
tion parameters, e.g. sim_output$open_evaluated_conditions()

Both methods return Arrow Dataset objects rather than data frames, allowing for efficient querying
and filtering before loading data into memory. To convert to a data frame, use dplyr::collect()
or as.data.frame().

Throughout this package, the eam_simulation_output object is used as the standard parameter
for downstream analysis functions, rather than passing Arrow objects or data frames directly.

For multi-item backends, at each discrete time point, only one item can reach the threshold. The
precision of this detection depends on the dt parameter. This design choice was made for perfor-
mance considerations. For almost all experimental scenarios, it is negligible. But users should be
aware of this limitation, if it is critical, try to increase the temporal resolution by reducing dt. For
implementation details, refer to the backend source code (accumulate_evidence_x* functions).

Value

A S3 object of class eam_simulation_output containing the output information

Examples

# Define formulas for the simulation
prior_formulas <- list(
V ~ distributional::dist_uniform(@.1, 1.0),
ndt ~ 0.3,
noise_coef ~ 1

)
between_trial_formulas <- list()

item_formulas <- list(
A_upper ~ 1,
A_lower ~ -1,
Vv~V

)

# Define noise factory
noise_factory <- function(context) {
noise_coef <- context$noise_coef
function(n, dt) {
noise_coef * rnorm(n, mean = @, sd = sqrt(dt))
}
3
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# Create configuration

config <- new_simulation_config(
prior_formulas = prior_formulas,
between_trial_formulas = between_trial_formulas,
item_formulas = item_formulas,
n_conditions = 10,
n_trials_per_condition = 10,
n_items = 5,
max_reached = 5,
max_t = 10,
dt = 0.01,
noise_mechanism = "add",
noise_factory = noise_factory,
model = "ddm",
parallel = FALSE

# Run simulation
sim_output <- run_simulation(config)

# Access results
dataset <- sim_output$open_dataset()
dataset # an arrow dataset object

# if you want to load it into memory, you can use:
df <- as.data.frame(dataset)
head(df)

# Access evaluated condition parameters

cond_dataset <- sim_output$open_evaluated_conditions()
df_cond <- as.data.frame(cond_dataset)

head(df_cond)

summarise_by Summarise data by groups with optional pivoting

Description

This function provides a flexible way to group data, compute summary statistics, and reshape re-
sults. It works similar to ‘dplyr::summarise()‘ but with added capabilities for pivoting results wider.

Usage

summarise_by(
.data = NULL,
.by = c("condition_idx"),
.wider_by = c("condition_idx")
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Arguments
.data A data frame to summarise, or NULL to create a reusable summary function
Summary expressions using dplyr-style syntax. Named arguments become col-
umn names in the output (e.g., ‘mean_rt = mean(rt)*).
by Character vector of grouping column names. Default is "condition_idx".
.wider_by Character vector of columns to keep as identifiers when pivoting. Default is
"condition_idx". Must be a subset of ‘.by‘. When ‘.wider_by* differs from
*by‘, the extra columns in ‘.by‘ will be spread across as column suffixes.
Details

You can use ‘summarise_by()‘ in two ways: 1. **Direct use**: Pass your data directly and get
results immediately 2. **Build-then-apply**: Create reusable summary functions, combine them
with ‘+°, then apply to your data later

The build-then-apply approach is useful when you want to compute different types of summaries
(e.g., RT statistics and accuracy statistics) and automatically join them together.

Value

- If “.data‘ is provided: A data frame with summarised results - If ‘.data‘ is NULL: A function that
can be applied to data later

Usage with ABC workflows

If you plan to use build_abc_input for ABC analysis, you must use summarise_by() to generate
summary statistics (or manually handle the arrow output format). This function typically works
together with map_by_condition to process simulation results. See map_by_condition for work-
flow examples.

Examples

# Example 1: Direct use - pass data and get results immediately
trial_data <- data.frame(
condition_idx = rep(1:2, each = 4),

item_idx = rep(1:2, 4),
rt = c(0.5, 0.6, 0.7, 0.8, 0.55, 0.65, .75, 0.85),
accuracy = c(1, 1, 0, 1, 1, @, 1, 1)

)

# Compute mean RT and accuracy by condition and item
result <- summarise_by(
trial_data,
mean_rt = mean(rt),
mean_acc = mean(accuracy),
.by = c("condition_idx", "item_idx"),
.wider_by = "condition_idx"
)
# Result has columns: condition_idx, mean_rt_item_idx_1, mean_rt_item_idx_2, etc.
result



summarise_posterior_parameters 29

# Example 2: Build-then-apply - create reusable summary functions
# Build separate summary functions for different statistics
rt_summary_pipe <- summarise_by(

mean_rt = mean(rt),

sd_rt = stats::sd(rt),

.by = c("condition_idx", "item_idx"),

.wider_by = "condition_idx"

)

acc_summary_pipe <- summarise_by(
mean_acc = mean(accuracy),
n_trials = length(accuracy),
.by = c("condition_idx", "item_idx"),
.wider_by = "condition_idx"

# Combine with + and apply to data

combined_summary_pipe <- rt_summary_pipe + acc_summary_pipe
result <- combined_summary_pipe(trial_data)

# Result has all summaries joined by condition_idx

result

summarise_posterior_parameters
Summarise posterior parameter distributions

Description

Compute summary statistics (mean, median, confidence intervals) for posterior parameters from
ABC results.

Usage

summarise_posterior_parameters(data, ...)

## S3 method for class 'abc'

summarise_posterior_parameters(data, ..., ci_level = 0.95)
Arguments
data An abc object containing posterior samples in adj.values or unadj.values.

Additional arguments for custom summary functions. Functions passed as named
arguments will be applied to each parameter’s posterior samples.

ci_level Numeric; confidence interval level (default: 0.95).
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Value

A data frame with summary statistics for each parameter.

See Also

summarise_posterior_parameters.abc

Examples

# Load ABC output from saved file
abc_file <- system.file(
"extdata”, "rdm_minimal”,

package = "eam

)

abc_rejection_model <- readRDS(abc_file)

n ”

abc”, "abc_rejection_model.rds",

# Summarise posterior distributions
summarise_posterior_parameters(abc_rejection_model)

# Custom confidence interval level
summarise_posterior_parameters(abc_rejection_model, ci_level = 0.90)

summarise_resample_medians
Summarise resample medians

Description

Calculate summary statistics for parameter medians across resample iterations. Returns mean, me-
dian, and confidence intervals of the median distributions.

Usage
summarise_resample_medians(data, ..., ci_level = 0.95)
Arguments
data List of abc results from abc_resample
Additional custom summary functions (named functions)
ci_level Confidence level for intervals (default 0.95)
Value

Data frame with summary statistics for each parameter
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Examples

# Load ABC input data from example simulation
abc_input <- readRDS(
system.file("extdata”, "rdm_minimal”,

)

n n

abc"”, "abc_input.rds"”, package

# Perform ABC resampling
results <- abc_resample(
target = abc_input$target,
param = abc_input$param,
sumstat = abc_input$sumstat,
n_iterations = 100,
n_samples = 100,
tol = 0.5,
method = "rejection”

# summarise the resample medians
summary_stats <- summarise_resample_medians(results, ci_level = 0.95)
print(summary_stats)

neamn)
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