## ---- include = FALSE---------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----elsa, fig.width=5--------------------------------------------------- library(elsa) file <- system.file('external/dem_example.grd',package='elsa') r <- raster(file) # reading a raster map (Dogital Elevation Model: DEM) plot(r, main='DEM: a continuous raster map') # ELSA statistic for the local distance of 2Km: e <- elsa(r,d=2000,categorical=FALSE) cl <- colorRampPalette(c('darkblue','yellow','red','black'))(100) # specifying a color scheme # Following is the map of ELSA, lower values represent higher local spatial autocorrelation plot(e,col=cl, main='ELSA for the local distance of 2 Km') # ELSA statistic for the local distance of 4Km: e2 <- elsa(r,d=4000,categorical=FALSE) plot(e2,col=cl, main='ELSA for the local distance of 4 Km') ##################3 file <- system.file('external/lc_example.grd',package='elsa') lc <- raster(file) plot(lc,main='Land cover: a categorical map') elc <- elsa(lc, d=2000,categorical = T) plot(elc, col=cl, main='ELSA') ## ----entrogram, fig.width=5---------------------------------------------- file <- system.file('external/dem_example.grd',package='elsa') r <- raster(file) # reading a raster map (Dogital Elevation Model: DEM) plot(r, main='DEM: a continuous raster map') en <- entrogram(r, width = 2000, cutoff = 15000) plot(en) ####### file <- system.file('external/lc_example.grd',package='elsa') lc <- raster(file) plot(lc,main='Land cover: a categorical map') en2 <- entrogram(lc, width = 2000, cutoff = 15000) plot(en2) ## ----lisa, fig.width=5--------------------------------------------------- ## LISAs can be used only for continuous data: file <- system.file('external/dem_example.grd',package='elsa') r <- raster(file) # reading a raster map (Dogital Elevation Model: DEM) plot(r, main='DEM: a continuous raster map') # calculate Local Moran's I: lisa.i <- lisa(r, d1=0,d2=2000,statistic='I') plot(lisa.i,col=cl,main="Local Moran's I") # calculate Local Geary's c: lisa.c <- lisa(r, d1=0,d2=2000,statistic='c') plot(lisa.c,col=cl,main="Local Geary's c") # calculate Local G or G*: lisa.g <- lisa(r, d1=0,d2=2000,statistic='g*') plot(lisa.g,col=cl,main="Local G*") # Calculate Variogram: v <- Variogram(r, width = 2000, cutoff = 15000) plot(v) # Calculate Correlogram: co <- correlogram(r, width = 2000, cutoff = 15000) plot(co) ## ----global, fig.width=5------------------------------------------------- file <- system.file('external/dem_example.grd',package='elsa') r <- raster(file) # Moran's I index: moran(r, d1=0, d2=2000) # Geary's c index: geary(r, d1=0, d2=2000) ## ----dif2list, fig.width=5----------------------------------------------- # imagine we have a categorical map including 4 classes (values 1:4), and the first two classes # (i.e., 1 and 2) belong to the major class 1 (so can have legends of 11, 12, respectively), and # the second two classes (i,e, 3 and 4) belong to the major class 2 (so can have legends of 21, # and 22 respectively). Then we can construct the data.frame as: d <- data.frame(g=c(1,2,3,4),leg=c(11,12,21,22)) d # dif2list generates a list including 4 values each corresponding to each value (class in the map #, i,e, 1:4). Each item then has a numeric vector containing a relative dissimilarity between the # main class (the name of the item in the list) and the other classes. If one wants to change # the relative dissimilarity between two specific classes, then the list can easily be edited and # used in the elsa function dif2list(d)