## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "../man/figures/README-" ) load("../data/star.rda") ## ----sample_split, warning = FALSE, message = FALSE--------------------------- library(dplyr) library(evalITR) # specifying the outcome outcomes <- "g3tlangss" # specifying the treatment treatment <- "treatment" # specifying the data (remove other outcomes) star_data <- star %>% dplyr::select(-c(g3treadss,g3tmathss)) # specifying the formula user_formula <- as.formula( "g3tlangss ~ treatment + gender + race + birthmonth + birthyear + SCHLURBN + GRDRANGE + GKENRMNT + GKFRLNCH + GKBUSED + GKWHITE ") # estimate ITR fit <- estimate_itr( treatment = treatment, form = user_formula, data = star_data, algorithms = c("causal_forest"), budget = 0.2, split_ratio = 0.7) # evaluate ITR est <- evaluate_itr(fit) ## ----sp_summary--------------------------------------------------------------- # summarize estimates summary(est) ## ----est_extract, warning = FALSE, message = FALSE, fig.width = 6, fig.height = 4---- # plot GATE estimates library(ggplot2) gate_est <- summary(est)$GATE plot_estimate(gate_est, type = "GATE") + scale_color_manual(values = c("#0072B2", "#D55E00")) ## ----sp_plot, fig.width = 6, fig.height = 4----------------------------------- # plot the AUPEC plot(est)