% LaTeX Article Template \documentclass[12pt]{article} \topmargin -0.7in \textheight 9.0in %\textwidth 6in \textwidth 6.5in %\oddsidemargin 0.25in %\oddsidemargin -.25in \oddsidemargin 0.0in % \VignetteIndexEntry{exact2x2: Unconditional Exact Tests} % \VignetteKeyword{Confidence Interval} % \VignetteKeyword{Exact Test} \newcommand{\code}[1]{{\sf #1}} \begin{document} \SweaveOpts{concordance=TRUE} \begin{center} {\Large \bf Unconditional Exact Tests in the exact2x2 R package} \\ Michael P. Fay, Sally A. Hunsberger \\ \today \end{center} %<>= %library(exact2x2) %@ \section*{Summary} These notes describe the calculations for the \code{uncondExact2x2} function in the \code{exact2x2} R package. This function does unconditional exact tests for the two sample binomial problem. It has options for serval different test statistics, mid p-value adjustments, and Berger and Boos adjustments. \section{Definition and Calculation of the Unconditional Exact Tests} \label{sec-uncondExact} \subsection{Defining the General Method} \label{sec-genmeth} Let ${\bf X} = [X_1, X_2]$ with $X_a \sim Binom(n_a, \theta_a)$ for $a=1,2$. Suppose we are interested in $\beta = b(\theta)$, where $b(\theta)$ is some function of $\theta_1$ and $\theta_2$. Common examples are the difference, $\beta_d= \theta_2-\theta_1$, the ratio, $\beta_r=\theta_2/\theta_1$, and the odds ratio, $\beta_{or} = \left\{ \theta_2 (1-\theta_1) \right\}/ \left\{ \theta_1 (1-\theta_2) \right\}$. We want to test hypotheses of the form $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$, where $\Theta_0$ and $\Theta_1$ are the set of all possible values of $[\theta_1, \theta_2]$ under the null hypothesis or the alternative hypothesis, repspectively. It is convenient to write $\Theta_0$ and $\Theta_1$ in terms of $\beta$. For example, \begin{eqnarray*} \Theta_0 & = & \left\{ \theta: b(\theta) = \beta_0 \right\} \end{eqnarray*} For this example, instead of writing the null hypothesis as $H_0: \theta \in \Theta_0$, we write it in terms of $\beta=b(\theta)$ as $H_0: \beta =\beta_0$. We are generally interested in three classes of hypotheses: two-sided hypotheses, \begin{eqnarray*} H_{0}: & & \beta=\beta_0 \\ H_{1}: & & \beta \neq \beta_0 \end{eqnarray*} or one of the one-sided hypotheses, \begin{eqnarray*} & \mbox{\underline{Alternative is Less}} & \mbox{\underline{Alternative is Greater}} \\ & H_{0}: \beta \geq \beta_0 & H_{0}: \beta \leq \beta_0 \\ & H_{1}: \beta < \beta_0 & H_{1}: \beta > \beta_0. \end{eqnarray*} First consider {\sf parmtype="difference"}. Let $T({\bf X})$ be some test statistic, where larger values suggest that $\theta_2$ is larger than $\theta_1$. Then a valid (i.e., exact) p-value for testing $H_0: \beta \geq \beta_0$ is \begin{eqnarray*} p_U({\bf x}, \beta_0) & = & \sup_{\theta: b(\theta) \geq \beta_0} Pr_{\theta} \left[ T({\bf X}) \leq T({\bf x}) \right]. \end{eqnarray*} For testing $H_0: \beta \leq \beta_0$ the p-value is \begin{eqnarray*} p_L({\bf x}, \beta_0) & = & \sup_{\theta: b(\theta) \leq \beta_0} Pr_{\theta} \left[ T({\bf X}) \geq T({\bf x}) \right]. \end{eqnarray*} When {\sf parmtype='ratio'} then when ${\bf x}=[0,0]$ there is no information about the ratio and we define the p-value as 1. Similarly, when {\sf parmtype='oddsratio'} and ${\bf x}=[0,0]$ or ${\bf x}=[n_1,n_2]$ there is no information about the odds ratio and we define the p-value as 1, and we do not calculate probabilities in p-value calculations over values with no information. Specifically, let $\mathcal{X}_I$ denote the set of ${\bf X}$ values with information about $\beta$. Then if ${\bf x} \notin \mathcal{X}_I$ set $p_U({\bf x}, \beta_0)$ and $p_{L}({\bf x}, \beta_0)$ to $1$, otherwise let $p_U({\bf x}, \beta_0)$ be \begin{eqnarray} \sup_{ \theta: b(\theta) \geq \beta_0 } P_{\theta} \left[ T({\bf X}) \leq T({\bf x}) | {\bf X} \in \mathcal{X}_I \right] P_{\theta} \left[ {\bf X} \in \mathcal{X}_I \right] \nonumber \end{eqnarray} and analogously, let $p_L({\bf x}, \beta_0)$ be \begin{eqnarray} \sup_{ \theta: b(\theta) \leq \beta_0 } P_{\theta} \left[ T({\bf X}) \geq T({\bf x}) | {\bf X} \in \mathcal{X}_I \right] P_{\theta} \left[ {\bf X} \in \mathcal{X}_I \right]. \nonumber \end{eqnarray} Since we never reject when ${\bf x} \notin \mathcal{X}_I$, these definitions give valid p-values, and additionally when ${\bf x} \notin \mathcal{X}_I$ we do not need to define $T({\bf x})$. The {\sf tsmethod} option gives two ways to calculate the two-sided p-value. The default option is `central' to give a central p-value, which is \begin{eqnarray*} p_{ts}({\bf x}, \beta_0) & = & p_{central}({\bf x}, \beta_0) \\ & = & \min \left\{ 1, 2 p_{U}({\bf x}, \beta_0), 2 p_{L}({\bf x}, \beta_0) \right\} \end{eqnarray*} The second options is {\sf tsmethod}=`square'. For this option, we square the test statistic, $T({\bf x})$, defined in the next section, and define the p-value as \begin{eqnarray*} p_{ts}({\bf x}, \beta_0) & = & p_{square}({\bf x}, \beta_0) \\ & = & \left\{ \begin{array}{c} \sup_{\theta \in \Theta_0} Pr_{\theta} \left[ T^2({\bf X}) \geq T^2({\bf x}) \right] \mbox{ (for parmtype="difference")} \\ \sup_{\theta \in \Theta_0} Pr_{\theta} \left[ T^2({\bf X}) \geq T^2({\bf x}) | X \in \mathcal{X}_I \right] Pr_{\theta} \left[X \in \mathcal{X}_I \right] \mbox{ (otherwise).} \end{array} \right. \end{eqnarray*} Since the probability expression only depends on the ordering, and since the ordering of the square of $T({\bf X})$ is the same as the ordering of absolute value of $T({\bf X})$, we can equivalently write $p_{square}$ in terms of absolute values. These exact p-values are necessarily conservative because for most $\theta \in \Theta_0$ we have \[ Pr_{\theta} \left[ p_U({\bf X}, \beta_0) \leq \alpha \right] < \alpha. \] A less conservative approach, {\em but one that is no longer valid (i.e., no longer exact)}, is to use a mid-p value. For example, the mid-p value associated with $p_U$ is \begin{eqnarray*} p_{Umid}({\bf x}, \Theta_0) & = & \sup_{\theta: b(\theta) \geq \beta_0} \left\{ Pr_{\theta} \left[ T({\bf X}) < T({\bf x}) \right] + \frac{1}{2} Pr_{\theta} \left[ T({\bf X}) = T({\bf x}) \right] \right\}. \end{eqnarray*} Other mid p-values are defined analogously. \subsection{Options for $T({\bf x})$ } \subsubsection{Overview} We now give the $T({\bf x})$ function that is defined by three options: {\sf parmtype}, {\sf nullparm }, and {\sf method}. The option {\sf parmtype} is one of `difference', `ratio' or `odds ratio', and it determines the parameter associated with the confidence interval. The option {\sf nullparm} defines $\beta_0$. The default for {\sf nullparm}=NULL, which is replaced by $\beta_0=0$ for {\sf parmtype}=`difference' and $\beta_0=1$ for {\sf parmtype}=`ratio' or `odds ratio'. Finally, {\sf method} defines the type of $T$ function: \begin{description} \item[simple:] then $T$ is an estimate of the {\sf parmtype} using the estimates $\hat{\theta}_1=x_1/n_1$ and $\hat{\theta}_2=x_2/n_2$. \item[simpleTB:] simple with a tie break. Ties in $T$ using the simple method are broken based on variability, with larger variability further away from the null. \item[score:] here $T$ is based on a score statistic. \item[wald pooled:] $T$ is a Wald statistic on the difference in sample means using the pooled variance estimate. \item[wald unpooled:] $T$ is a Wald statistic on the difference in sample means using an {\bf unpooled} variance estimate. \item[FisherAdj:] $T$ is a one-sided mid p-value using Fisher's exact test. Note that we create an exact unconditional test using the ordering by the mid p-value, so the test is valid (or exact), even though the mid p-values when used as p-values directly are not necessarily valid. \end{description} \subsubsection{Simple: Difference} When {\sf method}=`simple' and {\sf parmtype}=`difference' we have, \begin{eqnarray*} T({\bf x}) = T({[x_1, x_2 ] } ) & = & \frac{x_2}{n_2} - \frac{x_1}{n_1} - \beta_0 \end{eqnarray*} The order does not change as $\beta_0$ changes. \subsubsection{Simple with Tie Break: Difference} When {\sf method}=`simpleTB' and {\sf parmtype}=`difference' and {\sf tsmethod}=`central' we use $T({\bf x})$ from the previous subsection, then break ties by ordering by $T^*({\bf x})$ {\it within} each tied value for $T({\bf x})$, where \begin{eqnarray*} T^*({\bf x}) & = & \frac{\hat{\theta}_2 - \hat{\theta}_1}{\sqrt{\frac{\hat{\theta}_1(1-\hat{\theta}_1)}{n_1} + \frac{\hat{\theta}_2(1-\hat{\theta}_2)}{n_2} }} \end{eqnarray*} where $\hat{\theta}_1=x_1/n_1$ and $\hat{\theta}_2=x_2/n_2$. If $T^*$ gives a ratio of $0/0$ then it is set to $0$. The idea behind $T^*$ is that with each $\hat{\beta}_d = \hat{\theta}_2-\hat{\theta}_1$ value, values with lower variability are more extreme (i.e., ranked higher when $\hat{\beta}_d$ is positive and ranked lower when $\hat{\beta}_d$ is negative). We do not subtract $\beta_0$ from the numerator, because we do not want the order to change for different hypotheses, which makes calculations more difficult and could possibly lead to non-unified inferences (e.g., reject the null at level $\alpha$ but the $1-\alpha$ CI for $\beta_d$ includes $0$). \subsubsection{Score:Difference} When {\sf method}=`score' and {\sf parmtype}=`difference' we have, \begin{eqnarray*} T({[x_1, x_2 ] } ) & = & \frac{ \frac{x_2}{n_2} - \frac{x_1}{n_1} - \beta_0 }{ \sqrt{ \tilde{\theta}_1 (1-\tilde{\theta}_1)/n_1 + \tilde{\theta}_2 (1-\tilde{\theta}_2)/n_2} }, \end{eqnarray*} where $\tilde{\theta}_1$ and $\tilde{\theta}_2$ are the maximum likelihood estimates of $\theta_1$ and $\theta_2$ under the restriction that $b(\theta)=\beta_0$. See the code of {\sf constMLE.difference} for the formula, or the Appendix of Farrington and Manning (1990). \subsubsection{Wald-Pooled: Difference} When {\sf method}=`wald-pooled' and {\sf parmtype}=`difference' we have, \begin{eqnarray*} T({[x_1, x_2 ] } ) & = & \frac{ \hat{\theta}_2 - \hat{\theta}_1 - \beta_0 }{ \sqrt{ \hat{\theta} (1-\hat{\theta}) \left( \frac{1}{n_1} + \frac{1}{n_2} \right) }}, \end{eqnarray*} where $\hat{\theta}_1=x_1/n_1$ and $\hat{\theta}_2=x_2/n_2$ and $\hat{\theta}=(x_1+x_2)/(n_1+n_2)$. If $T$ gives a ratio of $0/0$ then it is set to $0$. \subsubsection{Wald-Unpooled: Difference} When {\sf method}=`wald-unpooled' and {\sf parmtype}=`difference' we have, \begin{eqnarray*} T({[x_1, x_2 ] } ) & = & \frac{ \hat{\theta}_2 - \hat{\theta}_1 - \beta_0 }{ \sqrt{ \hat{\theta}_1 (1-\hat{\theta}_1)/n_1 + \hat{\theta}_2 (1-\hat{\theta}_2)/n_2}}, \end{eqnarray*} where $\hat{\theta}_1=x_1/n_1$ and $\hat{\theta}_2=x_2/n_2$. If $T$ gives a ratio of $0/0$ then it is set to $0$. \subsubsection{Simple: Ratio} When {\sf method}=`simple' and {\sf parmtype}=`ratio' we have, \begin{eqnarray*} T({\bf x}) = T({[x_1, x_2 ] } ) & = & \log \left( \frac{\hat{\theta}_2}{ \beta_0 \hat{\theta}_1} \right) \\ & = & \log ( \hat{\theta}_2) - \log( \hat{\theta}_1) - \log (\beta_0), \end{eqnarray*} where $\hat{\theta}_a = x_a/n_a$ for $a=1,2$. Note $\log(0) \equiv \infty$ and $log(0)-\log(0) \equiv NA$. We do not need to define $NA$ values since $x=[0,0]$ has no information (see Section~\ref{sec-genmeth}). \subsubsection{Simple with Tie Break: Ratio} When {\sf method}=`simpleTB' and {\sf parmtype}=`ratio' we used $T({\bf x})$ from the previous subsection, then break ties by ordering by $T^*({\bf x})$ {\it within} each tied value for $T({\bf x})$, where \begin{eqnarray*} T^*({\bf x}) & = & \left\{ \begin{array}{cc} x_2 & \mbox{ if $x_1=0$ and $x_2>0$ } \\ 1/x_1 & \mbox{ if $x_1>0$ and $x_2=0$} \\ 0 & \mbox{ if $x_1=n_1$ and $x_2=n_2$ } \\ \frac{\log(\hat{\theta}_2) - \log(\hat{\theta}_1)}{\sqrt{\frac{1}{x_1}-\frac{1}{n_1} + \frac{1}{x_2} - \frac{1}{n_2} }} & \mbox{ if $x_1>0$ and $x_2>0$ and not($x_1=n_1$ and $x_2=n_2$)} \end{array} \right. \end{eqnarray*} where $\hat{\theta}_1=x_1/n_1$ and $\hat{\theta}_2=x_2/n_2$. In words, when $x_1/n_1=\hat{\theta}_1=0$ and $x_2>0$ then $T({\bf x}) = -\infty$ and we order by $x_2$; otherwise when we order $x_2/n_2=\hat{\theta}_2=0$ and $x_1>0$ then $T({\bf x}) = \infty$ and we order by $1/x_1$; otherwise when $\hat{\theta}_1=\hat{\theta}_2=1$ we do not break the ties (by setting $T^*({\bf x})=0$); otherwise for each $\log(\hat{\beta}_r) = \log(\hat{\theta}_2/\hat{\theta}_1)$ value, we rank values with lower variability are more extreme (i.e., ranked higher when $\hat{\beta}_r>1$ and ranked lower when $\hat{\beta}_r<1$ is negative). The variance formula comes from the variance estimate of the $\log(\hat{\beta}_r)$. Fleiss, Levin, and Paik (2003, p. 132, equation 6.112, except there is a typo) give the variance expression, \begin{eqnarray*} var(\log(\hat{\beta}_r)) & \approx & \sqrt{ \frac{n_1-x_1}{x_1 n_1} + \frac{n_2-x_2}{x_2 n_2} } = \sqrt{\frac{1}{x_1} - \frac{1}{n_1} + \frac{1}{x_2} - \frac{1}{n_2}}. \end{eqnarray*} We do not subtract $\log(\beta_0)$ from the numerator in the $T^*({|bf x})$ function to keep it simple. \subsubsection{Score: Ratio} When {\sf method}=`score' and {\sf parmtype}=`ratio' we have, \begin{eqnarray*} T({[x_1, x_2 ] } ) & = & \frac{ \hat{\theta}_2 - \hat{\theta}_1 \beta_0 }{ \sqrt{ \beta_0 \tilde{\theta}_1 (1-\tilde{\theta}_1)/n_1 + \tilde{\theta}_2 (1-\tilde{\theta}_2)/n_2} }, \end{eqnarray*} where $\tilde{\theta}_1$ and $\tilde{\theta}_2$ are the maximum likelihood estimates of $\theta_1$ and $\theta_2$ under the restriction that $\beta_r = b(\theta)=\beta_0$; for the formula for $\tilde{\theta}_a$ for $a=1,2$, see either the {\sf constrMLE.ratio}, Miettinen and Nurminen (1985). %or the StatXact manual (e.g., StatXact Procs 8, p. 298) \subsubsection{Simple: Odds Ratio} When {\sf method}=`simple' and {\sf parmtype}=`odds ratio' we have, \begin{eqnarray*} T({\bf x}) = T({[x_1, x_2 ] } ) & = & \log \left( \frac{\hat{\theta}_2 (1-\hat{\theta}_1)}{ \beta_0 \hat{\theta}_1 (1-\hat{\theta}_2)} \right), \end{eqnarray*} where $\hat{\theta}_a = x_a/n_a$ for $a=1,2$. \subsubsection{Simple with Tie Break: Odds Ratio} When {\sf method}=`simpleTB' and {\sf parmtype}=`oddsratio' we used $T({\bf x})$ from the previous subsection, then break ties by ordering by $T^*({\bf x})$ {\it within} each tied value for $T({\bf x})$, where \begin{eqnarray*} T^*({\bf x}) & = & \left\{ \begin{array}{cc} x_2 & \mbox{ if $x_1=0$ or $x_2=n_2$ } \\ 1/x_1 & \mbox{ if $x_1=n_1$ or $x_2=0$} \\ \frac{\log(x_2) - \log(n_2-x_2) -\log(x_1) + \log(n_1-x_1)}{\sqrt{\frac{1}{x_1}+\frac{1}{n_1-x_1} + \frac{1}{x_2} + \frac{1}{n_2-x_2} }} & \mbox{ otherwise} \end{array} \right. \end{eqnarray*} where $\hat{\theta}_1=x_1/n_1$ and $\hat{\theta}_2=x_2/n_2$. In words, when $\hat{\beta}_{or}=\infty$ then we order by $x_2$; otherwise when $\hat{\beta}_{or}=-\infty$ then we order by $1/x_1$; otherwise for each $\log(\hat{\beta}_{or})$ value, we rank values with lower variability are more extreme (i.e., ranked higher when $\hat{\beta}_r>1$ and ranked lower when $\hat{\beta}_r<1$ is negative). The variance formula comes from the variance estimate of the $\log(\hat{\beta}_{or})$. Fleiss, Levin, and Paik (2003, p. 102, equation 6.19) give the variance estimate for $var(\hat{\beta}_{or})$, and using the delta method, the estimate for $var( \log(\hat{\beta}_{or}) )$ is \begin{eqnarray*} var(\log(\hat{\beta}_{or})) & \approx & \sqrt{\frac{1}{x_1} + \frac{1}{n_1-x_1} + \frac{1}{x_2} + \frac{1}{n_2-x_2}}. \end{eqnarray*} We do not subtract $\log(\beta_0)$ from the numerator to keep it simple. \subsubsection{Score: Odds Ratio} When {\sf method}=`score' and {\sf parmtype}=`oddsratio' we use (see Agresti and Min, 2002, p. 381, except we do not square the statistic because we want to allow one-sided inferences), \begin{eqnarray*} T({[x_1, x_2 ] } ) & = & \left\{ n_2 \left( \frac{x_2}{n_2} - \tilde{\theta}_2 \right) \right\} \sqrt{ \frac{1}{n_1 \tilde{\theta}_1 (1-\tilde{\theta}_1)} + \frac{1}{n_2 \tilde{\theta}_2 (1-\tilde{\theta}_2)} }, \end{eqnarray*} where $\tilde{\theta}_1$ and $\tilde{\theta}_2$ are the maximum likelihood estimates of $\theta_1$ and $\theta_2$ under the restriction that \[ \tilde{\beta}_{or} = \frac{ \tilde{\theta}_2 (1-\tilde{\theta}_1) }{ \tilde{\theta}_1 (1-\tilde{\theta}_2) } = \beta_0. \] For the formula for $\tilde{\theta}_a$ for $a=1,2$, see either the function {\sf constrMLE.oddsratio} or Miettinen and Nurminen (1985). \subsubsection{FisherAdj: Difference, Ratio, or Odds Ratio} When {\sf method}=`FisherAdj' we order by the mid p-value from a one-sided Fisher's exact test. We do not change the ordering as the $\beta_0$ changes, so it can be used with any parmtype. Using the {\sf phyper} and {\sf dhyper} functions for the hypergeometric distribution, this becomes: \begin{eqnarray*} T({[x_1, x_2 ] } ) & = & \mbox{phyper}(x2,n2,n1,x2+x1) - 0.5*\mbox{dhyper}(x2,n2,n1,x1+x2) \end{eqnarray*} \section{Comparing Orderings} In Figure~\ref{fig:diff1} we show the default orderings and the {\sf method="simple"} orderings for different values of \code{parmtype}. \begin{figure} <>= library(exact2x2) par(mfrow=c(2,2)) n1<-n2<-8 Tstat<-pickTstat("FisherAdj", parmtype = "difference", tsmethod="central") plotT(Tstat,n1,n2,0,main="FisherAdj") Tstat<-pickTstat("simple", parmtype = "difference", tsmethod="central") plotT(Tstat,n1,n2,0,main="simple difference, beta0=0") Tstat<-pickTstat("simple", parmtype = "ratio", tsmethod="central") plotT(Tstat,n1,n2,1,main="simple ratio, beta0=1") Tstat<-pickTstat("simple", parmtype = "oddsratio", tsmethod="central") plotT(Tstat,n1,n2,1,main="simple oddsratio, beta0=1") #TallTB<-calcTall(Tstat, allx=rep(0:n1,n2+1), n1, # ally=rep(0:n2, each=n1+1), n2, # delta0=0, parmtype="difference", # alternative="two.sided", tsmethod="central", tiebreak=TRUE) #plotT(TallTB,n1,n2,0,main="simple difference, tie break, beta0=0") #Tstat<-pickTstat("wald-pooled", parmtype = "difference", tsmethod="central") #plotT(Tstat,n1,n2,0,main="wald-pooled (difference), beta0=0") par(mfrow=c(1,1)) @ \caption{Plots of the orderings using {\sf plotT}. Dark blue is highest, dard red is lowest, white is the middle, and black is no information. The default is method="FisherAdj" (same for all parmtypes), the method="simple" order by the plug-in estimates with sample proportions. \label{fig:diff1} } \end{figure} In Figure~\ref{fig:diff1.1} we show the similarity of several of the \code{parmtype="difference"} orderings. \begin{figure} <>= library(exact2x2) par(mfrow=c(2,2)) n1<-n2<-8 Tstat<-pickTstat("FisherAdj", parmtype = "difference", tsmethod="central") plotT(Tstat,n1,n2,0,main="FisherAdj") TallTB<-calcTall(Tstat, allx=rep(0:n1,n2+1), n1, ally=rep(0:n2, each=n1+1), n2, delta0=0, parmtype="difference", alternative="two.sided", tsmethod="central", tiebreak=TRUE) plotT(TallTB,n1,n2,0,main="simple difference, tie break, beta0=0") Tstat<-pickTstat("score", parmtype = "difference", tsmethod="central") plotT(Tstat,n1,n2,0,main="score difference, beta0=0") Tstat<-pickTstat("wald-pooled", tsmethod="central") plotT(Tstat,n1,n2,0,main="wald-pooled, beta0=0") #Tstat<-pickTstat("wald-pooled", parmtype = "difference", tsmethod="central") #plotT(Tstat,n1,n2,0,main="wald-pooled (difference), beta0=0") par(mfrow=c(1,1)) @ \caption{Plots of the orderings using {\sf plotT}. Notice how the orderings are nearly the same for the 4 methods. The FisherAdj method has the advantage that it does not change with parmtype or $\beta_0$. \label{fig:diff1.1} } \end{figure} The wald method gives a strange ordering at $x=(0,0)$ and $x=(n_1,n_2)$ when $\beta_0$ is close to zero (see Figure~\ref{fig:diff2}). \begin{figure} <>= library(exact2x2) par(mfrow=c(2,2)) n1<-n2<-8 Tstat<-pickTstat("simple", parmtype = "difference", tsmethod="central") plotT(Tstat,n1,n2,0.01,main="simple difference, beta0=0.01") TallTB<-calcTall(Tstat, allx=rep(0:n1,n2+1), n1, ally=rep(0:n2, each=n1+1), n2, delta0=0, parmtype="difference", alternative="two.sided", tsmethod="central", tiebreak=TRUE) plotT(TallTB,n1,n2,0.01,main="simple diff, tie break, beta0=0.01") Tstat<-pickTstat("wald-pooled", parmtype = "difference", tsmethod="central") plotT(Tstat,n1,n2,0.01,main="wald-pooled (diff), beta0=0.01") Tstat<-pickTstat("wald-unpooled", parmtype = "difference", tsmethod="central") plotT(Tstat,n1,n2,0.01,main="wald-unpooled (diff), beta0=0.01") par(mfrow=c(1,1)) @ \caption{Plots of the orderings using {\sf plotT}. Since we define $0/0=0$, when we have $\hat{\theta}_1=\hat{\theta}_2$ and $\beta_0=0$ then the Wald methods give 0 (see Figure~\ref{fig:diff1}). But when $\beta_0 =0.01$ these values at $x=(0,0)$ and $x=(n_1,n_2)$ go to $-\infty$. \label{fig:diff2} } \end{figure} When \code{tsmethod="square"} then a small difference in $\beta_0$ can make a big difference in the p-value (see Figure~\ref{fig:diff3} for ordering difference, Figure~\ref{fig:diffpvals1} for a p-value example). \begin{figure} <>= library(exact2x2) par(mfrow=c(2,2)) n1<-n2<-8 Tstat<-pickTstat("simple", parmtype = "difference", tsmethod="square") plotT(Tstat,n1,n2,0,main="simple diff, T^2, beta0=0") plotT(Tstat,n1,n2,0,main="simple diff, T^2, beta0=0.01") Tstat<-pickTstat("wald-pooled", tsmethod="square") plotT(Tstat,n1,n2,0,main="wald-pooled, T^2, beta0=0") plotT(Tstat,n1,n2,.01,main="wald-pooled, T^2, beta0=0.01") par(mfrow=c(1,1)) @ \caption{Plots of the orderings using {\sf plotT}. Small changes in $\beta_0$ can have large changes in the ordering, because of the denominators equalling $0$ at $x=(0,0)$ and $x=(n_1,n_2)$. \label{fig:diff3} } \end{figure} \begin{figure} <>= x1<-5 n1<-13 x2<-12 n2<-14 delta<- -99:99/100 p<-rep(NA,length(delta)) for (i in 1:length(delta)){ p[i]<-uncondExact2x2(x1,n1,x2,n2, parmtype = "difference", tsmethod="square", method="wald-pooled", conf.int=FALSE, nullparm=delta[i])$p.value } plot(delta,p,xlab=expression(beta[0])) @ \caption{P-values from \code{method="wald-pooled"}, \code{tsmethod="square"}, and \code{parmtype="difference"} for the data $x_1/n_1=5/13$ and $x_2/n_2=12/14$. Notice the strange behaviour of the p-value at $\beta_0=0.$ This is because the denominator at $x=(0,0)$ and $x=(n_1,n_2)$ is $0$ and $0/0$ is defined as zero, and the p-value is defined as the sup over the sample space which can give very large probability mass at $x=(0,0)$ or $x=(n_1,n_2)$. \label{fig:diffpvals1} } \end{figure} \clearpage \section{Confidence Intervals} Then we can create $100(1-\alpha)\%$ confidence regions as the set of $\beta_0$ value that fail to reject the associated null hypothesis. For example, \begin{eqnarray*} C_{ts}({\bf x}, 1- \alpha) & = & \left\{ \beta: p_{ts}({\bf x}, \beta) > \alpha \right\} \end{eqnarray*} gives a ``two-sided'' confidence region. The region may not be an interval if the p-value function is not unimodal. This problem occurs with Fisher's exact test (the Fisher-Irwin version, or `minlike' version). For central confidence regions we take the union of the one-sided confidence regions, in other words, \[ C_c({\bf x}, 1-\alpha) = C_L({\bf x}, 1- \alpha/2) \cup C_U({\bf x}, 1- \alpha/2), \] where $C_L$ and $C_U$ are the one-sided confidence regions, \begin{eqnarray*} C_{L}({\bf x}, 1- \alpha/2) & = & \left\{ \beta: p_{L}({\bf x}, \beta) > \alpha/2 \right\} \end{eqnarray*} and \begin{eqnarray*} C_{U}({\bf x}, 1- \alpha/2) & = & \left\{ \beta: p_{U}({\bf x}, \beta) > \alpha/2 \right\}. \end{eqnarray*} If the regions are intervals, and we let $L({\bf x}, 1- \alpha/2) = \min C_L({\bf x}, 1- \alpha/2)$ and $U({\bf x}, 1- \alpha/2) = \max C_U({\bf x}, 1- \alpha/2)$, then the central interval is \begin{eqnarray*} C_c({\bf x}, 1- \alpha) & = & \left\{ L({\bf x}, 1- \alpha/2), U({\bf x}, 1- \alpha/2) \right\}. \end{eqnarray*} For the mid-p confidence regions, we replace the p-values with the mid-p values. \section{Berger and Boos Adjustment} The Berger-Boos (1994) adjustment is as follows. Do the usual unconditional exact test, but instead of taking the supremum over the entire null parameter space, we calculate a $100(1-\gamma)\%$ confidence region over the null space, and only search within that. The $100(1-\gamma)\%$ confidence region is the union of the $100(1-\gamma/2)$ exact central two-sided confidence interval for $\theta_1$ and the analogous $100(1-\gamma/2)$ interval for $\theta_2$. This is the method used by StatXact. Searching over that space gives anti-conservative p-values, so we turn those anti-conservative p-values into valid p-values by adding $\gamma$ to them. For details see Berger and Boos (1994) or the StatXact manual. \section{The E+M Adjustment} Lloyd (2008) proposed another adjustment called the estimated and maximized ($E+M$) p-value that can be applied to any ordering and any parmtype. In this method, we replace an ordering statistic, $T$, with $T^*$, where $T^*$ is an estimated p-value when testing $H_{0}: \beta \leq \beta_0$ (or the negative estimated p-value when testing $H_{0}: \beta \geq \beta_0$). We estimate the p-value by plugging in $\hat{\theta}_0=[\hat{\theta}_{10}, \hat{\theta}_{20}]$ instead of taking the supremum of $\theta$ under the null, where $\hat{\theta}_0$ is the maximum likelihood estimator of $\theta$ under the null hypothesis. For example, the approximation for $p_L$ uses $\hat{p}_L({\bf x}, \beta_0) = P_{\hat{\theta}_0} \left[ T({\bf X}) \leq T({\bf x}) \right]$. Then we ``maximize'' using $T^*({\bf x}) = \hat{p}_L({\bf x}, \beta_0)$ instead of $T$ as the ordering function. For details see Loyd (2008). \section*{References} \begin{description} \item Agresti, A and Min, Y (2002). Biostatistics 3: 379-386. \item Berger, RL, and Boos, DD (1994). JASA 89: 1012-1016. \item Farrington and Manning (1990). Statistics in Medicine 1447-1454. \item Fay, MP, and Brittain, EH (2016). ``Finite sample pointwise confidence intervals for a survival distribution with right-censored data.'' {\it Statistics in Medicine} 35: 2726-2740. \item Fleiss, JL, Levin, B, Paik, MC (2003). {\it Statistical Methods for Rates and Proportions, Third edition}. Wiley: New York. \item Lloyd, CJ (2008). Exact p-values for discrete models obtained by estimation and maximization. Australian and New Zealand Journal of Statistics 50(4): 329-345. \item Miettinen and Nurminen (1985). Statistics in Medicine 213-226. %\item Blaker, H. (2000). ``Confidence curves and improved exact confidence intervals for discrete distributions'' %{\it Canadian Journal of Statistics} {\bf 28,} 783-798 (correction {\bf 29,} 681). %\item Fay, M.P. (2009). ``Confidence Intervals that Match Fisher's Exact or Blaker's Exact Tests'' (to appear Biostatistics. %See Fay2009MatchingCI.pdf in doc %directory of this package for earlier version which is essentially the paper plus the supplement). \end{description} \end{document}