Package 'fluxible'

June 5, 2025

Title Ecosystem Gas Fluxes Calculations for Closed Loop Chamber Setup **Version** 1.2.2

Date 2025-06-04

Description Processes the raw data from closed loop flux chamber (or tent) setups into ecosystem gas fluxes usable for analysis. It goes from a data frame of gas concentration over time (which can contain several measurements) and a meta data file indicating which measurement was done when, to a data frame of ecosystem gas fluxes including quality diagnostics. Functions provided include different models (exponential as described in Zhao et al (2018) <doi:10.1016/j.agrformet.2018.08.022>, quadratic and linear) to estimate the fluxes from the raw data, quality assessment, plotting for visual check and calculation of fluxes based on the setup specific parameters (chamber size, plot area, ...).

```
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.2
Suggests knitr, rmarkdown, testthat (>= 3.0.0), vdiffr, forcats, tidyverse, fs
Config/testthat/edition 3
Imports broom, dplyr, ggforce, ggplot2, haven, lubridate, rlang, purrr, stats, stringr, tidyr, zoo, progress, purrrlyr, tidyselect, lifecycle
Depends R (>= 4.1)
LazyData true
URL https://plant-functional-trait-course.github.io/fluxible/, https://github.com/Plant-Functional-Trait-Course/fluxible
```

VignetteBuilder knitr

BugReports https://github.com/Plant-Functional-Trait-Course/fluxible/issues **NeedsCompilation** no

2 Contents

Contents

co2_conc
co2_conc_mid_missing
co2_conc_missing
co2_df_missing
co2_df_short
co2_fluxes
co2_liahovden
flux_calc
flux_check_item
flux_cut
flux_fitting
flux_fitting_exptz
flux_fitting_hm
flux_fitting_lm
flux_fitting_quadratic
flux_fitting_zhao18
flux_fit_type
flux_flag_count
flux_fun_check
flux_gep
flux_gpp
flux_match
flux_match_col
flux_match_fixed
flux_param_exp
flux_param_kappamax
flux_param_lm
flux_param_qua
flux_plot
flux_plot_exp
flux_plot_flag
flux_plot_lin
flux_plot_quadratic
flux_quality
flux_quality_exp
flux_quality_kappamax
flux quality lm

co2_conc	
CO2_COIIC	-

co2_c	conc	CO	02 c	one	cen	tra	tic	on																				
Index																												46
	twogases_record .			•		•		•	•	•	 •	•	•	•	 •	•	•	•	 •	•	•	•	•	•	٠	•	•	45
	stupeflux																											
	slopes0_temp																											
	record_short																											
	record_liahovden .																											
	raw_twogases																											
	flux_quality_qua .																											37

Description

CO2 concentration with measurements meta data

Usage

co2_conc

Format

A tibble with 1251 rows and 13 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_n_conc Number of data point per flux.

f_ratio Ratio of n_conc over length of the measurement (in seconds).

f_flag_match Data quality flags.

Examples

co2_conc

co2_conc_mid_missing CO2 concentration with missing data

Description

CO2 concentration with measurements meta data and missing data in the middle of the measurements

Usage

```
co2_conc_mid_missing
```

Format

A tibble with 1251 rows and 13 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_n_conc Number of data point per flux.

f_ratio Ratio of n_conc over length of the measurement (in seconds).

f_flag_match Data quality flags.

Examples

```
co2_conc_mid_missing
```

co2_conc_missing 5

co2_conc_missing

CO2 concentration

Description

CO2 concentration with measurements meta data, with missing data.

Usage

```
co2_conc_missing
```

Format

A tibble with 668 rows and 13 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_n_conc Number of data point per flux.

f_ratio Ratio of n_conc over length of the measurement (in seconds).

f_flag_match Data quality flags.

Examples

```
co2_conc_missing
```

6 co2_df_short

co2_df_missing

CO2 concentration with missing data

Description

Continuous CO2 concentration as measured on the field, with missing data.

Usage

```
co2_df_missing
```

Format

A tibble with 1148 rows and 5 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

Examples

co2_df_missing

co2_df_short

CO2 concentration

Description

Continuous CO2 concentration as measured on the field

Usage

```
co2_df_short
```

Format

A tibble with 1801 rows and 5 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

co2_fluxes 7

Examples

co2_df_short

co2_fluxes

CO2 fluxes

Description

Manually calculated CO2 fluxes for testing purpose. df_short and record_short were used, with a zhao18 fit.

Usage

co2_fluxes

Format

A tibble with 6 rows and 11 variables

f_fluxid Unique ID for each flux.

f_slope_tz Slope of C(t) at t zero.

f_temp_air_ave Air temperature inside the flux chamber in Celsius averaged over the flux measurement.

f_flux CO2 flux in mmol/sqm/hour.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm averaged over the flux measurement.

temp_soil Ground temperature inside the flux chamber in Celsius averaged over the flux measurement.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement started.

temp_fahr Air temperature inside the flux chamber in Fahrenheit averaged over the flux measurement.

temp_kelvin Air temperature inside the flux chamber in Kelvin averaged over the flux measurement.

Examples

co2_fluxes

8 flux_calc

co2_liahovden

CO2 concentration at Liahovden

Description

CO2 concentration at Liahovden site, used in example in readme file

Usage

```
co2_liahovden
```

Format

A tibble with 89692 rows and 5 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

Examples

co2_liahovden

flux_calc

Calculates ecosystem gas fluxes

Description

Calculates a flux based on the rate of change of gas concentration over time

```
flux_calc(
    slopes_df,
    slope_col,
    f_datetime = f_datetime,
    temp_air_col,
    chamber_volume = deprecated(),
    setup_volume,
    atm_pressure,
    plot_area,
    f_fluxid = f_fluxid,
    conc_unit,
```

flux_calc 9

```
flux_unit,
cols_keep = c(),
cols_ave = c(),
cols_sum = c(),
cols_med = c(),
cols_nest = "none",
tube_volume = deprecated(),
temp_air_unit = "celsius",
f_cut = f_cut,
keep_arg = "keep",
cut = TRUE,
fit_type = c()
```

Arguments

slopes_df	dataframe of flux slopes
slope_col	column containing the slope to calculate the flux
f_datetime	column containing the datetime of each gas concentration measurements in slopes_df. The first one after cutting will be kept as datetime of each flux in the output.
temp_air_col	column containing the air temperature used to calculate fluxes. Will be averaged with NA removed.
chamber_volume	[Deprecated] see setup_volume
setup_volume	volume of the flux chamber and instrument together in L, can also be a column in case it is a variable
atm_pressure	atmospheric pressure in atm, can be a constant (numerical) or a variable (column name)
plot_area	area of the plot in m^2, can also be a column in case it is a variable
f_fluxid	column containing the flux IDs
conc_unit	unit in which the concentration of gas was measured ppm or ppb
flux_unit	unit in which the calculated flux will be: mmol outputs fluxes in $mmol*m^{-2}*h^{-1}$; micromol outputs fluxes in $micromol*m^{-2}*h^{-1}$
cols_keep	columns to keep from the input to the output. Those columns need to have unique values for each flux, as distinct is applied.
cols_ave	columns with values that should be averaged for each flux in the output. Note that NA are removed in mean calculation. Those columns will get the _ave suffix in the output.
cols_sum	columns with values for which is sum is provided for each flux in the output. Those columns will get the _sum suffix in the output.
cols_med	columns with values for which is median is provided for each flux in the output. Note that NA are removed in median calculation. Those columns will get the _med suffix in the output.
cols_nest	columns to nest in nested_variables for each flux in the output. Can be character vector of column names, "none" (default) selects none, or "all" selects all the column except those in cols_keep.

10 flux_check_item

tube_volume [Deprecated] see setup_volume

temp_air_unit units in which air temperature was measured. Has to be either celsius (default),

fahrenheit or kelvin.

f_cut column containing cutting information

keep_arg name in f_cut of data to keep

cut if 'TRUE' (default), the measurements will be cut according to 'f_cut' before

calculating fluxes. This has no influence on the flux itself since the slope is provided from flux_fitting, but it will influence the values of the variables in

cols_ave, cols_cum, and cols_med.

fit_type (optional) model used in flux_fitting. Will be automatically filled if slopes_df

was produced using flux_fitting.

Value

a dataframe containing flux IDs, datetime of measurements' starts, fluxes in $mmol*m^{-2}*h^{-1}$ or $micromol*m^{-2}*h^{-1}$ (f_flux) according to flux_unit, temperature average for each flux in Kelvin (f_temp_ave), the total volume of the setup for each measurement (f_volume_setup), the model used in flux_fitting, any column specified in cols_keep, any column specified in cols_ave with their value averaged over the measurement after cuts and discarding NA.

Examples

```
data(co2_conc)
slopes <- flux_fitting(co2_conc, conc, datetime, fit_type = "exp_zhao18")
flux_calc(slopes,
f_slope,
datetime,
temp_air,
conc_unit = "ppm",
flux_unit = "mmol",
setup_volume = 24.575,
atm_pressure = 1,
plot_area = 0.0625)</pre>
```

flux_check_item

check the items inside flux_fun_check

Description

check the items inside flux_fun_check

```
flux_check_item(arg, fn, msg, narg, df_name = NA)
```

flux_cut

Arguments

argument to be checked by fn

fn function to check arg

msg message to display in case arg is the wrong class

narg name of arg

df_name name of arg in case it is a data frame

Author(s)

Adam Klimes

flux_cut filter cut data before calculating fluxes

Description

filter cut data before calculating fluxes

Usage

```
flux_cut(slopes_df, cut_col, keep_arg)
```

Arguments

slopes_df dataset containing slopes and cut column
cut_col column containing cutting information

keep_arg name in cut_col of data to keep

flux_fitting Fitting a model to concentration data and estimating the slope

Description

Fits gas concentration over time data with a model (exponential, quadratic or linear) and provides the slope later used to calculate gas fluxes with flux_calc

12 flux_fitting

Usage

```
flux_fitting(
 conc_df,
 f\_conc = f\_conc,
 f_datetime = f_datetime,
 f_start = f_start,
  f_{end} = f_{end}
 f_fluxid = f_fluxid,
  fit_type,
 start_cut = 0,
 end_cut = 0,
  t_zero = 0,
  cz\_window = 15,
 b_{window} = 10,
 a_{window} = 10,
 roll_width = 15
)
```

Arguments

conc_df	dataframe of gas concentration over time
f_conc	column with gas concentration data
f_datetime	column with datetime of each concentration measurement Note that if there are duplicated datetime in the same f_fluxid only the first row will be kept
f_start	column with datetime when the measurement started (ymd_hms)
f_end	column with datetime when the measurement ended (ymd_hms)
f_fluxid	column with ID of each flux
fit_type	exp_zhao18, exp_tz, exp_hm, quadratic or linear. exp_zhao18 is using the exponential model $C(t) = C_m + a(t-t_z) + (C_z - C_m) \exp(-b(t-t_z))$ from Zhao et al (2018). expt_tz is a modified version which allows the user to fix t_zero: $C(t) = C_m + a*t + (C_z - C_m) \exp(-b*t)$ exp_hm is using the HM model (Pedersen et al., 2010; Hutchinson and Mosier, 1981) $C(t) = C_m + (C_z - C_m) \exp(-b*t)$ exponential is equal to exp_zhao18, for backwards compatibility
start_cut	time to discard at the start of the measurements (in seconds)
end_cut	time to discard at the end of the measurements (in seconds)
t_zero	time at which the slope should be calculated (for quadratic, \exp_t and \exp_t fits)
cz_window	window used to calculate Cz, at the beginning of cut window (exp_zhao18 and exp_tz fits)
b_window	window to estimate b. It is an interval after tz where it is assumed that the model fits the data perfectly (exp_zhao18 and exp_tz fits)
a_window	window at the end of the flux to estimate a (exp_zhao18 and exp_tz fits)
roll_width	width of the rolling mean for gas concentration when looking for tz, ideally same as cz_window (exp_zhao18 and exp_tz fits)

flux_fitting_exptz 13

Value

a dataframe with the slope at t zero (f_slope), a datetime column of t zero (f_start_z), a factor column indicating the cuts (f_cut), the time in seconds since the start of the measurement (f_time), the modeled fit (f_fit), the modeled slope (f_fit_slope), the parameters of the fit depending on the model used, and any columns present in the input. The type of fit is added as an attribute for use by the other functions.

References

Pedersen, A.R., Petersen, S.O., Schelde, K., 2010. A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. European Journal of Soil Science 61, 888–902. https://doi.org/10.1111/j.1365-2389.2010.01291.x

Hutchinson, G.L., Mosier, A.R., 1981. Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes. Soil Science Society of America Journal 45, 311–316. https://doi.org/10.2136/sssaj1981.0361599500450

Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022

Examples

```
data(co2_conc)
flux_fitting(co2_conc, conc, datetime, fit_type = "exp_zhao18")
flux_fitting(co2_conc, conc, datetime, fit_type = "quadratic",
t_zero = 10, end_cut = 30)
```

flux_fitting_exptz

Fitting a model to the gas concentration curve and estimating the slope over time, using a modified version of the model from Zhao et al (2018) that allows the user to fix t_zero.

Description

Fits the exponential expression to the concentration evolution $C(t) = C_m + a * t + (C_z - C_m) \exp(-b * t)$

```
flux_fitting_exptz(
  conc_df_cut,
  conc_df,
  f_conc,
  f_start,
  f_fluxid,
  start_cut,
  cz_window,
  b_window,
  a_window,
```

14 flux_fitting_hm

```
roll_width,
  t_zero
)
```

Arguments

conc_df_cut	dataframe of gas concentration over time, cut
conc_df	dataframe of gas concentration over time
f_conc	column with gas concentration
f_start	column with datetime when the measurement started
f_fluxid	column with ID of each flux
start_cut	time to discard at the start of the measurements (in seconds)
cz_window	window used to calculate Cz, at the beginning of cut window
b_window	window to estimate b. It is an interval after tz where it is assumed that C fits the data perfectly
a_window	window at the end of the flux to estimate a
roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window
t_zero	time at which the slope should be calculated (for quadratic fit)

Value

a dataframe with the slope at t zero, modeled concentration over time and exponential expression parameters

References

Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022

flux_fitting_hm	Fitting a model to the gas concentration curve and estimating the slope over time, using the HM model (Pedersen et al., 2010; Hutchinson and Mosier, 1981).
-----------------	---

Description

Fits the exponential expression to the concentration evolution $C(t) = C_m + (C_z - C_m) \exp(-b * t)$

flux_fitting_hm 15

Usage

```
flux_fitting_hm(
  conc_df_cut,
  conc_df,
  f_conc,
  f_start,
  f_fluxid,
  start_cut,
  cz_window,
  b_window,
  roll_width,
  t_zero
)
```

Arguments

conc_df_cut	dataframe of gas concentration over time, cut
conc_df	dataframe of gas concentration over time
f_conc	column with gas concentration
f_start	column with datetime when the measurement started
f_fluxid	column with ID of each flux
start_cut	time to discard at the start of the measurements (in seconds)
cz_window	window used to calculate Cz, at the beginning of cut window
b_window	window to estimate b. It is an interval after tz where it is assumed that C fits the data perfectly
roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window
t_zero	time at which the slope should be calculated (for quadratic fit)

Value

a dataframe with the slope at t zero, modeled concentration over time and exponential expression parameters

References

Pedersen, A.R., Petersen, S.O., Schelde, K., 2010. A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. European Journal of Soil Science 61, 888–902. https://doi.org/10.1111/j.1365-2389.2010.01291.x

Hutchinson, G.L., Mosier, A.R., 1981. Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes. Soil Science Society of America Journal 45, 311–316. https://doi.org/10.2136/sssaj1981.0361599500450

flux_fitting_quadratic

flux_fitting_lm

linear fit to gas concentration over time

Description

fits a linear model to the gas concentration over time

Usage

```
flux_fitting_lm(conc_df_cut, conc_df, f_conc, f_fluxid, start_cut)
```

Arguments

conc_df_cut dataframe of gas concentration over time, cut
conc_df dataframe of gas concentration over time
f_conc column with gas concentration

f_fluxid column with ID of each flux

start_cut time to discard at the start of the measurements (in seconds)

Value

a df with the modeled gas concentration, slope, intercept, std error, r square and p value of the linear model

```
flux_fitting_quadratic
```

quadratic fit to gas concentration over time

Description

fits a quadratic model to the gas concentration over time

```
flux_fitting_quadratic(
  conc_df_cut,
  conc_df,
  f_conc,
  f_start,
  f_fluxid,
  start_cut,
  t_zero
)
```

flux_fitting_zhao18

Arguments

conc_df_cut	dataframe of gas concentration over time, cut
conc_df	dataframe of gas concentration over time
f_conc	column with gas concentration
f_start	column with datetime when the measurement started
f_fluxid	column with ID of each flux
start_cut	time to discard at the start of the measurements (in seconds)
t_zero	time at which the slope should be calculated

Value

a df with the modeled gas concentration, slope, intercept, std error, r square and p value of the quadratic model

flux_fitting_zhao18 Fitting a model to the gas concentration curve and estimating the slope over time, using the exponential model from Zhao et al (2018)

Description

Fits an exponential expression to the concentration evolution

Usage

```
flux_fitting_zhao18(
  conc_df_cut,
  conc_df,
  f_conc,
  f_start,
  f_fluxid,
  start_cut,
  cz_window,
  b_window,
  a_window,
  roll_width
)
```

Arguments

conc_df_cut	dataframe of gas concentration over time, cut
conc_df	dataframe of gas concentration over time
f_conc	column with gas concentration
f_start	column with datetime when the measurement started
f_fluxid	column with ID of each flux

flux_fit_type

start_cut	time to discard at the start of the measurements (in seconds)
cz_window	window used to calculate Cz, at the beginning of cut window
b_window	window to estimate b. It is an interval after tz where it is assumed that C fits the data perfectly
a_window	window at the end of the flux to estimate a
roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window

Value

a dataframe with the slope at t zero, modeled concentration over time and exponential expression parameters

References

Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022

flux_fit_type	to check the type of fit

Description

extracts the type of fit that was applied in flux_fitting or checks that the fit_type provided by the user is compatible with Fluxible

Usage

Arguments

```
df any dataframe

fit_type type of fit that was applied in flux_fitting. Needs to be filled only if the df was produced outside of the Fluxible workflow.

fit_type_list list of fit types in use with Fluxible.
```

flux_flag_count 19

flux_flag_count

Counts quality flags

Description

Provides a table of how many fluxes were attributed which quality flag. This function is incorporated in flux_quality as a message, but can be used alone to extract a dataframe with the flag count.

Usage

```
flux_flag_count(
  flags_df,
  f_fluxid = f_fluxid,
  f_quality_flag = f_quality_flag,
  f_flags = c("ok", "discard", "zero", "force_discard", "start_error", "no_data",
        "force_ok", "force_zero", "force_lm", "no_slope")
)
```

Arguments

```
flags_df dataframe of flux slopes

f_fluxid column containing fluxes unique ID

f_quality_flag column containing the quality flags

f_flags list of flags used in the dataset (if different from default from flux_quality). If not provided, it will list only the flags that are present in the dataset (no showing 0).
```

Value

a dataframe with the number of fluxes for each quality flags and their proportion to the total

Author(s)

Vincent Belde

Examples

```
data(co2_conc)
slopes <- flux_fitting(co2_conc, conc, datetime, fit_type = "exp_zhao18")
slopes_flag <- flux_quality(slopes, conc)
flux_flag_count(slopes_flag)</pre>
```

20 flux_gep

f1	ПХ	fun	check
1 1	ux	ı uıı	CHECK

checking that arguments and columns are in the correct class

Description

checking that arguments and columns are in the correct class

Usage

```
flux_fun_check(args, fn, msg, name_df = NA)
```

Arguments

args list of arguments or dataframe to check

fn list of functions used to check (is.numeric, is.character, ...)

msg list of messages to return in case of failed check

name_df in case args is a df with selected columns to check original df to

take the name from for a more obvious error message

Author(s)

Adam Klimes

flux_gep

Calculates GEP

Description

[Deprecated]

flux_gep was renamed flux_gpp out of consistancy with the litterature.

Calculate gross ecosystem production (GEP) from net ecosystem (NEE) exchange and ecosystem respiration (ER) as GEP = NEE - ER. Datetime and other variables to keep will be taken from the NEE measurement. Fluxes presents in the dataset that are neither NEE nor ER (soilR, LRC or other) are not lost.

```
flux_gep(
  fluxes_df,
  type_col,
  f_datetime,
  f_flux = f_flux,
  id_cols,
  nee_arg = "NEE",
  er_arg = "ER",
  cols_keep = "none"
)
```

flux_gpp 21

Arguments

fluxes_df	a dataframe containing NEE and ER
type_col	column containing type of flux (NEE or ER)
f_datetime	column containing start of measurement as datetime
f_flux	column containing flux values
id_cols	columns used to identify each pair of ER and NEE
nee_arg	argument designating NEE fluxes in type column
er_arg	argument designating ER fluxes in type column
cols_keep	columns to keep from fluxes_df. Values from NEE row will be filled in GEP row. none (default) keeps only the columns in id_cols, flux, type and datetime columns; all keeps all the columns; can also be a vector of column names.

Value

a dataframe with \$GEP = NEE - ER\$ in long format with GEP, NEE, and ER as flux type, datetime, and any column specified in cols_keep. Values of datetime and columns in cols_keep for GEP row are taken from NEE measurements.

Examples

```
data(co2_fluxes)
flux_gep(co2_fluxes, type, f_start, id_cols = "turfID",
cols_keep = c("temp_soil"))
```

flux_gpp

Calculates GPP

Description

to calculate gross primary production (GPP) from net ecosystem (NEE) exchange and ecosystem respiration (ER) as GPP = NEE - ER. Datetime and other variables to keep will be taken from the NEE measurement. Fluxes presents in the dataset that are neither NEE nor ER (soilR, LRC or other) are not lost.

```
flux_gpp(
  fluxes_df,
  type_col,
  f_datetime,
  f_flux = f_flux,
  id_cols,
  nee_arg = "NEE",
  er_arg = "ER",
  cols_keep = "none"
)
```

22 flux_match

Arguments

fluxes_df	a dataframe containing NEE and ER
type_col	column containing type of flux (NEE or ER)
f_datetime	column containing start of measurement as datetime
f_flux	column containing flux values
id_cols	columns used to identify each pair of ER and NEE
nee_arg	argument designating NEE fluxes in type column
er_arg	argument designating ER fluxes in type column
cols_keep	columns to keep from fluxes_df. Values from NEE row will be filled in GPP row. none (default) keeps only the columns in id_cols, flux, type and datetime columns; all keeps all the columns; can also be a vector of column names.

Value

a dataframe with \$GPP = NEE - ER\$ in long format with GPP, NEE, and ER as flux type, datetime, and any column specified in cols_keep. Values of datetime and columns in cols_keep for GPP row are taken from NEE measurements.

Examples

```
data(co2_fluxes)
flux_gpp(co2_fluxes, type, f_start, id_cols = "turfID",
cols_keep = c("temp_soil"))
```

flux_match

Matching continuously measured fluxes with measurement IDs and meta data

Description

Matching a dataframe of continuously measured gas concentration data with measurement metadata from another dataframe. Measurements are paired with their metadata based on datetime. Extra variables in both dataframes are kept in the output.

```
flux_match(
  raw_conc,
  field_record,
  f_datetime,
  start_col,
  end_col,
  measurement_length,
  fixed_length = TRUE,
  time_diff = 0,
```

flux_match 23

```
startcrop = 0,
ratio_threshold = deprecated(),
f_conc = deprecated()
)
```

Arguments

raw_conc dataframe of CO2 concentration measured continuously. Has to contain at least

a datetime column in ymd_hms format and a gas concentration column as dou-

ble.

field_record dataframe recording which measurement happened when. Has to contain at

least a column containing the start of each measurement, and any other column

identifying the measurements.

f_datetime datetime column in raw_conc (ymd_hms format)

start_col start column in field_record (ymd_hms format)

end_col end columne in field_record (ymd_hms format). Only needed if fixed_length

= "FALSE".

measurement_length

length of the measurement (in seconds) from the start specified in the field_record

fixed_length if TRUE (default), the measurement_length is used to create the end column. If

FALSE, end_col has to be provided.

time_diff time difference (in seconds) between the two datasets. Will be added to the

datetime column of the raw_conc dataset. For situations where the time was not

synchronized correctly.

startcrop [Deprecated] startcrop is no longer supported. Please use start_cut in

flux_fitting instead.

ratio_threshold

[Deprecated] ratio_threshold is no longer supported. Please use ratio_threshold

in flux_quality instead.

f_conc [Deprecated] f_conc is no longer required

Value

a dataframe with concentration measurements, corresponding datetime, flux ID (f_fluxid), measurements start (f_start) and end (f_end), flags in case of no data or low number of data (f_flag_match), the number of datapoints per measurement (f_n_conc), the ratio of number of datapoints over the length of each measurement in seconds (f_ratio), and any variables present in one of the inputs.

Examples

```
data(co2_df_short, record_short)
flux_match(co2_df_short, record_short, datetime, start,
measurement_length = 180)
```

24 flux_match_fixed

flux_match_col

Using an already existing end column to slice measurements

Description

Provides the f_end column for flux_match

Usage

```
flux_match_col(field_record, start_col, end_col, name_field_record)
```

Arguments

field_record dataframe recording which measurement happened when. Has to contain at

least a column containing the start of each measurement, and any other column

identifying the measurements.

start_col start column in field_record (ymd_hms format)
end_col end columne in field_record (ymd_hms format)

name_field_record

name of the df (for error message)

flux_match_fixed

Using a fixed measurement length to slice the measurements

Description

Provides the f_end column for flux_match

Usage

```
flux_match_fixed(field_record, start_col, measurement_length)
```

Arguments

field_record dataframe recording which measurement happened when. Has to contain at

least a column containing the start of each measurement, and any other column

identifying the measurements.

start_col start column in field_record (ymd_hms format)

measurement_length

length of the measurement (in seconds) from the start specified in the field_record

flux_param_exp 25

flux_param_exp

prepares text to print for flux_plot function

Description

creates a df with quality flags and quality diagnostics to print on the plots produced by flux_plot. flux_param_lm is for fit in the lm family (linear and quadratic) flux_param_exp is for the exponential fit

Usage

```
flux_param_exp(slopes_df, f_conc)
```

Arguments

slopes_df that is being provided to flux_plot

f_conc column with gas concentration

flux_param_kappamax

prepares text to print for flux_plot function

Description

creates a df with quality flags and quality diagnostics to print on the plots produced by flux_plot. flux_param_lm is for fit in the lm family (linear and quadratic) flux_param_exp is for the exponential fit

Usage

```
flux_param_kappamax(slopes_df, f_conc)
```

Arguments

slopes_df that is being provided to flux_plot

f_conc column with gas concentration

26 flux_param_qua

flux_param_lm

prepares text to print in flux_plot

Description

creates a df with quality flags and quality diagnostics to print on the plots produced by flux_plot. flux_param_lm is for fit in the lm family (linear and quadratic) flux_param_exp is for the exponential fit

Usage

```
flux_param_lm(slopes_df, f_conc)
```

Arguments

slopes_df that is being provided to flux_plot

f_conc column with gas concentration

flux_param_qua

prepares text to print in flux_plot

Description

creates a df with quality flags and quality diagnostics to print on the plots produced by flux_plot. flux_param_lm is for fit in the lm family (linear and quadratic) flux_param_exp is for the exponential fit

Usage

```
flux_param_qua(slopes_df, f_conc)
```

Arguments

slopes_df that is being provided to flux_plot

f_conc column with gas concentration

flux_plot 27

flux_plot

Plotting fluxes for visual evaluation

Description

Plots the fluxes, fit and slope in facets with color code indicating quality flags This function takes time to run and is optional in the workflow, but it is still highly recommended to use it to visually check the measurements. Note that 'flux_plot' is specific to the fluxible package and will work best with datasets produced following a fluxible workflow.

Usage

```
flux_plot(
  slopes_df,
  f_{conc} = f_{conc}
  f_datetime = f_datetime,
  color_discard = "#D55E00",
  color_cut = "#D55E00",
  color_ok = "#009E73",
  color_zero = "#CC79A7";
  scale_x_datetime_args = list(date_breaks = "1 min", minor_breaks = "10 sec",
    date_labels = "%e/%m \n %H:%M"),
  f_ylim_upper = 800,
  f_ylim_lower = 400,
  f_plotname = "",
  facet_wrap_args = list(ncol = 4, nrow = 3, scales = "free"),
  y_text_position = 500,
  print_plot = "FALSE",
 output = "print_only",
  ggsave_args = list()
)
```

Arguments

```
dataset containing slopes, with flags produced by flux_quality
slopes_df
f_conc
                  column with gas concentration
f_datetime
                  column with datetime of each data point
color_discard
                  color for fits with a discard quality flag
color_cut
                  color for the part of the flux that is cut
color ok
                  color for fits with an ok quality flag
color_zero
                  color for fits with a zero quality flag
scale_x_datetime_args
                  list of arguments for scale_x_datetime
f_ylim_upper
                  y axis upper limit
```

28 flux_plot_exp

f_ylim_lower y axis lower limit

f_plotname filename for the extracted pdf file; if empty, the name of slopes_df will be used

facet_wrap_args

list of arguments for facet_wrap_paginate

y_text_position

position of the text box

print_plot logical, if TRUE it prints the plot as a ggplot object but will take time depending

on the size of the dataset

output pdfpages, the plots are saved as A4 landscape pdf pages; ggsave, the plots can

be saved with the ggsave function; $print_only$ (default) prints the plot without

creating a file (independently from print_plot being TRUE or FALSE)

ggsave_args list of arguments for ggsave (in case output = "ggsave")

Value

plots of fluxes, with raw concentration data points, fit, slope, and color code indicating quality flags and cuts. The plots are organized in facets according to flux ID, and a text box display the quality flag and diagnostics of each measurement. The plots are returned as a ggplot object if print_plot = TRUE; if print_plot = FALSE it will not return anything but will produce a file according to the output argument.

Examples

```
data(co2_conc)
slopes <- flux_fitting(co2_conc, conc, datetime, fit_type = "exp_zhao18")
slopes_flag <- flux_quality(slopes, conc)
flux_plot(slopes_flag, conc, datetime)</pre>
```

flux_plot_exp

plotting fluxes with exponential fit

Description

plots the fluxes that were fitted with an exponential model

Usage

```
flux_plot_exp(slopes_df, f_conc, f_datetime, y_text_position)
```

Arguments

slopes_df dataset containing slopes f_conc column with gas concentration

f_datetime column with datetime of each data point

y_text_position

position of the text box

flux_plot_flag 29

flux_plot_flag

creates the flag column to be used by flux_plot

Description

creates a column with quality flags (from flux_quality) for the part of the rows to be kept, and cut flag for rows to be discarded

Usage

```
flux_plot_flag(slopes_df, param_df)
```

Arguments

slopes_df as provided in flux_plot
param_df as provided by flux_param

flux_plot_lin

plotting fluxes with linear fit

Description

plots the fluxes that were fitted with a linear model

Usage

```
flux_plot_lin(slopes_df, f_conc, f_datetime, y_text_position)
```

Arguments

slopes_df dataset containing slopes

f_conc column with gas concentration

f_datetime column with datetime of each data point

y_text_position

position of the text box

30 flux_quality

```
flux_plot_quadratic plotting fluxes with a quadratic fit
```

Description

specific part of flux_plot for quadratic fit

Usage

```
flux_plot_quadratic(slopes_df, f_conc, f_datetime, y_text_position)
```

Arguments

```
slopes_df dataset containing slopes

f_conc column with gas concentration

f_datetime column with datetime of each data point

y_text_position position of the text box
```

flux_quality

Assessing the quality of the fits

Description

Indicates if the slopes provided by flux_fitting should be discarded or replaced by 0 according to quality thresholds set by user

```
flux_quality(
    slopes_df,
    f_conc = f_conc,
    f_fluxid = f_fluxid,
    f_slope = f_slope,
    f_time = f_time,
    f_start = f_start,
    f_end = f_end,
    f_fit = f_fit,
    f_cut = f_cut,
    f_pvalue = f_pvalue,
    f_rsquared = f_rsquared,
    f_slope_lm = f_slope_lm,
    f_fit_lm = f_fit_lm,
    f_b = f_b,
```

flux_quality 31

```
force_discard = c(),
  force_ok = c(),
  force_zero = c(),
  force_lm = c(),
  force_exp = c(),
  ratio_threshold = 0.5,
  gfactor_threshold = 10,
  fit_type = c(),
  ambient\_conc = 421,
  error = 100,
 pvalue_threshold = 0.3,
  rsquared_threshold = 0.7,
  rmse_threshold = 25,
  cor_threshold = 0.5,
  b_threshold = 1,
  cut_arg = "cut",
  instr_error = 5,
 kappamax = FALSE
)
```

Arguments

slopes_df	dataset containing slopes
f_conc	column containing the measured gas concentration (exponential fits)
f_fluxid	column containing unique IDs for each flux
f_slope	column containing the slope of each flux (as calculated by the $flux_fitting$ function)
f_time	column containing the time of each measurement in seconds (exponential fits)
f_start	column with datetime of the start of the measurement (after cuts)
f_end	column with datetime of the end of the measurement (after cuts)
f_fit	column containing the modeled data (exponential fits)
f_cut	column containing the cutting information
f_pvalue	column containing the p-value of each flux (linear and quadratic fits)
f_rsquared	column containing the r squared of each flux (linear and quadratic fits)
f_slope_lm	column containing the linear slope of each flux (as calculated by the flux_fitting function)
f_fit_lm	column with the fit of the linear model. (as calculated by the ${\tt flux_fitting}$ function)
f_b	column containing the b parameter of the exponential expression (exponential fits)
force_discard	vector of fluxIDs that should be discarded by the user's decision
force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag
force_zero	vector of fluxIDs that should be replaced by zero by the user's decision

32 flux_quality

force_lm vector of fluxIDs for which the linear slope should be used by the user's decision vector of fluxIDs for which the exponential slope should be used by the user's decision (kappamax method)

ratio_threshold

ratio of gas concentration data points over length of measurement (in seconds) below which the measurement will be considered as not having enough data points to be considered for calculations

gfactor_threshold

threshold for the g-factor. Defines a window with its opposite outside which the flux will be flagged discard (exponential quadratic fits).

fit_type model fitted to the data, linear, quadratic or exponential. Will be automatically

filled if slopes_df was produced using flux_fitting

ambient_conc ambient gas concentration in ppm at the site of measurement (used to detect

measurement that started with a polluted setup)

error error of the setup, defines a window outside of which the starting values indicate

a polluted setup

pvalue_threshold

threshold of p-value below which the change of gas concentration over time is considered not significant (linear and quadratic fits)

rsquared_threshold

threshold of r squared value below which the linear model is considered an un-

satisfactory fit (linear and quadratic fits)

rmse_threshold threshold for the RMSE of each flux above which the fit is considered unsatis-

factory (exponential fits)

cor_threshold threshold for the correlation coefficient of gas concentration with time below

which the correlation is considered not significant (exponential fits)

b_threshold threshold for the b parameter. Defines a window with its opposite inside which

the fit is considered good enough (exponential fits)

cut_arg argument defining that the data point should be cut out

instr_error error of the instrument, in the same unit as the gas concentration

kappamax logical. If TRUE the kappamax method will be applied.

Details

the kappamax method (Hüppi et al., 2018) selects the linear slope if |b| > kappamax, with $kappamax = |f_slope_lm/instr_error|$. The original kappamax method was applied to the HMR model (Pedersen et al., 2010; Hutchinson and Mosier, 1981), but here it can be applied to any exponential fit.

Value

a dataframe with added columns of quality flags (f_quality_flag), the slope corrected according to the quality flags (f_slope_corr), and any columns present in the input. It will also print a summary of the quality flags. This summary can also be exported as a dataframe using flux_flag_count

flux_quality_exp 33

References

Pedersen, A.R., Petersen, S.O., Schelde, K., 2010. A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. European Journal of Soil Science 61, 888–902. https://doi.org/10.1111/j.1365-2389.2010.01291.x

Hüppi, R., Felber, R., Krauss, M., Six, J., Leifeld, J., Fuß, R., 2018. Restricting the nonlinearity parameter in soil greenhouse gas flux calculation for more reliable flux estimates. PLOS ONE 13, e0200876. https://doi.org/10.1371/journal.pone.0200876

Hutchinson, G.L., Mosier, A.R., 1981. Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes. Soil Science Society of America Journal 45, 311–316.

Examples

```
data(co2_conc)
slopes <- flux_fitting(co2_conc, conc, datetime, fit_type = "exp_zhao18")
flux_quality(slopes, conc)</pre>
```

flux_quality_exp

quality assessment for the slopes estimated by flux_fitting

Description

indicates if fluxes should be discarded or replaced by 0 according to parameters set by user. flux_quality_lm is for the model of the lm family. flux_quality_exp is for the exponential model.

```
flux_quality_exp(
  slopes_df,
  f_conc,
  f_fluxid,
  f_slope,
  f_time,
  f_fit,
  f_slope_lm,
  f_b,
  force_discard,
  force_ok,
  force_zero,
  force_lm,
  gfactor_threshold,
  rmse_threshold,
  cor_threshold,
  b_threshold,
  name_df
)
```

Arguments

slopes_df	dataset containing slopes, fluxID, and parameters of the exponential expression	
f_conc	column with gas concentration	
f_fluxid	column of ID for each measurement	
f_slope	column containing the slope of each flux (as calculated by the ${\tt flux_fitting}$ function)	
f_time	column containing the time of each measurement in seconds	
f_fit	column containing the modeled data	
f_slope_lm	column containing the linear slope of each flux (as calculated by the flux_fitting function)	
f_b	column containing the b parameter of the exponential expression	
force_discard	vector of fluxIDs that should be discarded by the user's decision	
force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag	
force_zero	vector of fluxIDs that should be replaced by zero by the user's decision	
force_lm	vector of fluxIDs for which the linear slope should be used by the user's decision	
gfactor_threshold		
	threshold for the g-factor. Defines a window with its opposite outside which the flux will be flagged discard.	
rmse_threshold	threshold for the RMSE of each flux above which the fit is considered unsatisfactory	
cor_threshold	threshold for the correlation coefficient of gas concentration with time below which the correlation is considered non significant	
b_threshold	threshold for the b parameter. Defines a window with its opposite inside which the fit is considered good enough.	
name_df	name of slopes_df	

Value

same dataframe with added flag and corrected slopes columns

 ${\tt flux_quality_kappamax} \ \ \textit{selecting linear slope with kappamax method}$

Description

selecting linear slope with kappamax method

flux_quality_lm 35

Usage

```
flux_quality_kappamax(
    slopes_df,
    f_slope,
    f_fit,
    f_fluxid,
    f_slope_lm,
    f_fit_lm,
    f_b,
    force_exp,
    fit_type,
    instr_error,
    name_df
)
```

Arguments

slopes_df	dataset containing slopes
f_slope	column containing the slope of each flux (as calculated by the flux_fitting function)
f_fit	column containing the modeled data (exponential fits)
f_fluxid	column of ID for each measurement
f_slope_lm	column containing the linear slope of each flux
f_fit_lm	column with the fit of the linear model.
f_b	column containing the b parameter of the exponential expression
force_exp	vector of fluxIDs for which the exponential slope should be used by the user's decision (kappamax method)
fit_type	model fitted to the data, linear, quadratic or exponential. Will be automatically filled if slopes_df was produced using flux_fitting
instr_error	error of the instrument, in the same unit as the gas concentration
name_df	name of slopes_df

flux_quality_lm

quality assessment for the slopes estimated by flux_fitting

Description

indicates if fluxes should be discarded or replaced by 0 according to parameters set by user. flux_quality_lm is for the model of the lm family. flux_quality_exp is for the exponential model.

36 flux_quality_lm

Usage

```
flux_quality_lm(
    slopes_df,
    f_fluxid,
    f_slope,
    f_pvalue,
    f_rsquared,
    force_discard,
    force_ok,
    force_zero,
    pvalue_threshold,
    rsquared_threshold,
    name_df
)
```

Arguments

	slopes_df	dataset containing slopes, fluxID, p.value and r.squared	
	f_fluxid	column of ID for each measurement	
	f_slope	column containing the slope of each flux (as calculated by the flux_fitting function)	
	f_pvalue	column containing the p-value of each flux	
	f_rsquared	column containing the r squared to be used for the quality assessment	
	force_discard	vector of fluxIDs that should be discarded by the user's decision	
	force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag	
	force_zero	vector of fluxIDs that should be replaced by zero by the user's decision	
	pvalue_threshold		
		threshold of p-value below which the change of gas concentration over time is considered not significant (user decided)	
rsquared_threshold			
		threshold of r squared value below which the linear model is considered an un-	

Value

name_df

same dataframe with added flag and corrected slopes columns

name of slopes_df (used for error message)

satisfactory fit

flux_quality_qua 37

flux_quality_qua quality assessment for the slopes estimated by flux_fitting

Description

indicates if fluxes should be discarded or replaced by 0 according to parameters set by user. flux_quality_lm is for the model of the lm family. flux_quality_exp is for the exponential model.

Usage

```
flux_quality_qua(
  slopes_df,
  f_fluxid,
  f_slope,
  f_pvalue,
  f_rsquared,
  f_slope_lm,
  force_discard,
  force_ok,
  force_zero,
  force_lm,
  gfactor_threshold,
  pvalue_threshold,
  rsquared_threshold,
  name_df
)
```

Arguments

slopes_df	dataset containing slopes, fluxID, p.value and r.squared
f_fluxid	column of ID for each measurement
f_slope	column containing the slope of each flux (as calculated by the flux_fitting function)
f_pvalue	column containing the p-value of each flux
f_rsquared	column containing the r squared to be used for the quality assessment
f_slope_lm	column containing the linear slope of each flux (as calculated by the flux_fitting function)
force_discard	vector of fluxIDs that should be discarded by the user's decision
force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag
force_zero	vector of fluxIDs that should be replaced by zero by the user's decision
force_lm	vector of fluxIDs for which the linear slope should be used by the user's decision
gfactor_thresh	old
	threshold for the g-factor. Defines a window with its opposite outside which the

threshold for the g-factor. Defines a window with its opposite outside which the flux will be flagged discard.

38 raw_twogases

pvalue_threshold

threshold of p-value below which the change of gas concentration over time is considered not significant (user decided)

rsquared_threshold

threshold of r squared value below which the linear model is considered an un-

satisfactory fit

name_df name of slopes_df (used for error message)

Value

same dataframe with added flag and corrected slopes columns

raw_twogases

CO2 and CH4 concentration

Description

CO2 and CH4 measured simultaneously

Usage

raw_twogases

Format

A tibble with 21681 rows and 4 variables

co2_conc CO2 concentration in ppm

ch4_conc CH4 concentration in ppb

datetime Datetime on the datapoint

temp_air Air temperature inside the chamber in Celsius

Examples

raw_twogases

record_liahovden 39

record_liahovden

Measurements meta data at Liahovden

Description

Measurements meta data as recorded on the field at site Liahovden

Usage

record_liahovden

Format

A tibble with 138 rows and 3 variables

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

round Round of measurement.

start Datetime at which the measurement was started.

Examples

record_liahovden

record_short

Measurements meta data

Description

Measurements meta data as recorded on the field

Usage

record_short

Format

A tibble with 6 rows and 3 variables

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

Examples

record_short

40 slopes0_temp

slopes0_temp

Slopes for each flux

Description

Slopes of C(t) for each flux with air temperature in various units.

Usage

slopes0_temp

Format

A tibble with 1251 rows and 29 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f start Datetime at which the measurement was started.

f end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_ratio Ratio of number of datapoints over length of measurement in seconds.

f_flag_match Flags from flux_match.

f time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

 $\mathbf{f}_{\mathbf{C}}\mathbf{z}$ Cz parameter of the C(t) function.

f_Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

f_a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

f_b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

f_tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

f_slope Slope of C(t) at tz

f_fit C(t), modeled CO2 concentration as a function of time.

f_fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

f_start_z Datetime format of tz

f_cor_coef Correlation coeffecient of concentration over time.

f_RMSE RMSE of the fit.

f_quality_flag Quality flags according to flux_quality.

f_slope_corr Slope as advised by quality flags.

temp_fahr Air temperature inside the flux chamber in Fahrenheit averaged over the flux measurement.

temp_kelvin Air temperature inside the flux chamber in Kelvin averaged over the flux measurement

Examples

```
slopes0_temp
```

stupeflux

From raw gas concentration over time to clean fluxes

Description

Wrapper function for the Fluxible workflow. We recommand using the step-by-step workflow for more control over the process.

```
stupeflux(
  raw_conc,
  field_record,
  f_datetime,
  start_col,
  end_col,
  f_conc,
  setup_volume,
 measurement_length,
  fit_type,
  temp_air_col,
  atm_pressure,
  plot_area,
  conc_unit,
  flux_unit,
  fixed_length = TRUE,
  cols_keep = c(),
  cols_ave = c(),
  cols_sum = c(),
  cols_med = c(),
  ratio_threshold = 0.5,
  time_diff = 0,
  start_cut = 0,
  end_cut = 0,
  cz_window = 15,
```

```
b_{window} = 10,
  a_{window} = 10,
  roll_width = 15,
  t_zero = 0,
  force\_discard = c(),
  force_ok = c(),
  force\_zero = c(),
 ambient\_conc = 421,
  error = 100,
  pvalue_threshold = 0.3,
  rsquared_threshold = 0.7,
  rmse\_threshold = 25,
  cor_threshold = 0.5,
  b_{threshold} = 1,
  temp_air_unit = "celsius",
  cut = TRUE,
  slope\_correction = TRUE
)
```

Arguments

raw_conc dataframe of CO2 concentration measured continuously. Has to contain at least

a datetime column in ymd_hms format and a gas concentration column as dou-

ble.

field_record dataframe recording which measurement happened when. Has to contain at

least a column containing the start of each measurement, and any other column

identifying the measurements.

f_datetime datetime column in raw_conc (dmy_hms format)

start_col start column in field_record (dmy_hms format)

end_col end columne in field_record (ymd_hms format)

f_conc concentration column in raw conc

 ${\tt setup_volume} \qquad {\tt volume} \ \ {\tt of} \ the \ {\tt flux} \ chamber \ and \ instrument \ together \ in \ L, \ can \ also \ be \ a \ column$

in case it is a variable

measurement_length

length of the measurement (in seconds) from the start specified in the field_record

fit_type exp_zhao18, exp_tz, exp_hm, quadratic or linear. exp_zhao18 is using the

exponential model $C(t) = C_m + a(t-t_z) + (C_z - C_m) \exp(-b(t-t_z))$ from Zhao et al (2018). expt_tz is a modified version which allows the user to fix t_zero: $C(t) = C_m + a*t + (C_z - C_m) \exp(-b*t)$ exp_hm is using the HM model (Pedersen et al., 2010; Hutchinson and Mosier, 1981) C(t) =

 $C_m + (C_z - C_m) \exp(-b * t)$

temp_air_col column containing the air temperature used to calculate fluxes. Will be averaged

with NA removed.

atm_pressure atmospheric pressure, can be a constant (numerical) or a variable (column name)

plot_area area of the plot in m^2, can also be a column in case it is a variable

conc_unit

unit in which the concentration of gas was measured ppm or ppb

CONC_UNIT	unit in which the concentration of gas was measured ppin of ppb
flux_unit	unit in which the calculated flux will be mmol outputs fluxes in $mmol*m^{-2}*h^{-1}$; micromol outputs fluxes in $micromol*m^{-2}*h^{-1}$
fixed_length	if TRUE (default), the measurement_length is used to create the end column. If FALSE, end_col has to be provided.
cols_keep	columns to keep from the input to the output. Those columns need to have unique values for each flux, as distinct() is applied.
cols_ave	columns with values that should be averaged for each flux in the output. Note that NA are removed in mean calculation.
cols_sum	columns with values for which is sum is provided for each flux in the output. Note that NA are removed in sum calculation.
cols_med	columns with values for which is median is provided for each flux in the output. Note that NA are removed in median calculation.
ratio_threshol	d
	ratio of gas concentration data points over length of measurement (in seconds) below which the measurement will be considered as not having enough data points to be considered for calculations
time_diff	time difference (in seconds) between the two datasets. Will be added to the datetime column of the raw_conc dataset. For situations where the time was not synchronized correctly.
start_cut	time to discard at the start of the measurements (in seconds)
end_cut	time to discard at the end of the measurements (in seconds)
cz_window	window used to calculate Cz, at the beginning of cut window (exp_zhao18 and exp_tz fits)
b_window	window to estimate b. It is an interval after tz where it is assumed that the model fits the data perfectly (exp_zhao18 and exp_tz fits)
a_window	window at the end of the flux to estimate a (exp_zhao18 and exp_tz fits)
roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window (exp_zhao18 and exp_tz fits)
t_zero	time at which the slope should be calculated (for quadratic and exp_tz fits)
force_discard	vector of fluxIDs that should be discarded by the user's decision
force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag
force_zero	vector of fluxIDs that should be replaced by zero by the user's decision
ambient_conc	ambient gas concentration in ppm at the site of measurement (used to detect measurement that started with a polluted setup)
error	error of the setup, defines a window outside of which the starting values indicate a polluted setup
pvalue_thresho	ld
	threshold of p-value below which the change of gas concentration over time is

considered not significant (linear and quadratic fit)

rsquared_threshold

threshold of r squared value below which the linear model is considered an unsatisfactory fit (linear and quadratic fit)

rmse_threshold threshold for the RMSE of each flux above which the fit is considered unsatis-

factory (exp_zhao18 and exp_tz fits)

cor_threshold threshold for the correlation coefficient of gas concentration with time below

which the correlation is considered not significant (exp_zhao18 and exp_tz

fits)

b_threshold threshold for the b parameter. Defines a window with its opposite inside which

the fit is considered good enough (exp_zhao18 and exp_tz fits)

temp_air_unit units in which air temperature was measured. Has to be either celsius (default),

fahrenheit or kelvin.

cut if 'TRUE' (default), the measurements will be cut according to 'f_cut' before

calculating fluxes. This has no influence on the flux itself since the slope is provided from flux_fitting, but it will influence the values of the columns in

cols_ave.

slope_correction

logical. If TRUE, the flux will be calculated with the slope corrected according

to the recommandations of the quality flags.

Value

a dataframe containing flux IDs, datetime of measurements' starts, fluxes in $mmol*m^{-2}*h^{-1}$ or $micromol*m^{-2}*h^{-1}$ (f_flux) according to flux_unit, temperature average for each flux in Kelvin (f_temp_ave), the total volume of the setup for each measurement (f_volume_setup), the model used in flux_fitting, any column specified in cols_keep, any column specified in cols_ave with their value averaged over the measurement after cuts and discarding NA.

References

Pedersen, A.R., Petersen, S.O., Schelde, K., 2010. A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. European Journal of Soil Science 61, 888–902. https://doi.org/10.1111/j.1365-2389.2010.01291.x

Hutchinson, G.L., Mosier, A.R., 1981. Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes. Soil Science Society of America Journal 45, 311–316. https://doi.org/10.2136/sssaj1981.0361599500450

Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022

Examples

```
data(co2_df_short)
data(record_short)
stupeflux(
raw_conc = co2_df_short,
field_record = record_short,
f_datetime = datetime,
start_col = start,
```

twogases_record 45

```
f_conc = conc,
measurement_length = 180,
fit_type = "exp_zhao18",
temp_air_col = temp_air,
conc_unit = "ppm",
flux_unit = "mmo1",
setup_volume = 24.575,
atm_pressure = 1,
plot_area = 0.0625
)
```

twogases_record

Two gases field record

Description

Two gases field record

Usage

twogases_record

Format

A tibble with 12 rows and 1 variable

start Start datetime of each flux measurement

Examples

twogases_record

Index

* datasets	flux_match_col, 24	
co2_conc, 3	flux_match_fixed, 24	
co2_conc_mid_missing, 4	flux_param_exp, 25	
co2_conc_missing, 5	flux_param_kappamax, 25	
co2_df_missing, 6	flux_param_lm, 26	
<u> </u>		
<pre>co2_df_short, 6 co2_fluxes, 7</pre>	flux_param_qua, 26 flux_plot, 27	
	•	
co2_liahovden, 8	flux_plot_exp, 28	
raw_twogases, 38	flux_plot_flag, 29	
record_liahovden, 39	flux_plot_lin, 29	
record_short, 39	flux_plot_quadratic, 30	
slopes0_temp, 40	flux_quality, 19, 27, 30	
twogases_record, 45	flux_quality_exp, 33	
	flux_quality_kappamax, 34	
co2_conc, 3	flux_quality_lm, 35	
co2_conc_mid_missing, 4	flux_quality_qua, 37	
co2_conc_missing, 5	fluxible, 27	
co2_df_missing, 6	20	
co2_df_short, 6	ggsave, 28	
co2_fluxes, 7	raw twogacoc 38	
co2_liahovden, 8	raw_twogases, 38 record_liahovden, 39	
	record_short, 39	
distinct, 9	record_short, 39	
C	scale_x_datetime, 27	
facet_wrap_paginate, 28	slopes0_temp, 40	
flux_calc, 8, 11	stupeflux, 41	
flux_check_item, 10	ocapo. Lax, 11	
flux_cut, 11	twogases_record, 45	
flux_fit_type, 18		
flux_fitting, 10, 11, 30–32, 34, 35, 37, 44		
flux_fitting_exptz, 13		
flux_fitting_hm, 14		
flux_fitting_lm, 16		
flux_fitting_quadratic, 16		
flux_fitting_zhao18, 17		
flux_flag_count, 19, 32		
flux_fun_check, 20		
flux_gep, 20		
flux_gpp, 21		
flux_match, 22		