## ---- eval = FALSE------------------------------------------------------------ # library("fsbrain"); # fsbrain::download_optional_data(); # subjects_dir = fsbrain::get_optional_data_filepath("subjects_dir"); # subjects_list = c("subject1", "subject2"); # subject_id = 'subject1'; # for function which use one subject only ## ---- eval = FALSE------------------------------------------------------------ # # Read from a simple ASCII subjects file (one subject per line, typically no header): # sjl = read.md.subjects("~/data/study1/subjects.txt", header = FALSE); # # # Extract the subject identifiers from a FreeSurfer Group Descriptor file, used for the GLM: # sjl = read.md.subjects.from.fsgd("~/data/study1/subjects.fsgd"); # # # Use the subject identifier column from a demographics file, i.e., a CSV file containing demographics and other covariates (typically age, gender, site, IQ): # demographics = read.md.demographics("~/data/study1/demogr.csv", header = TRUE); # sjl = demographics$participant_id; # or whatever your subject identifier column is called. ## ---- eval = FALSE------------------------------------------------------------ # groupdata_nat = group.morph.native(subjects_dir, subjects_list, "thickness", "lh"); ## ---- eval = FALSE------------------------------------------------------------ # subject_id = 'subject1'; # cat(sprintf("Subject '%s' has %d vertices and the mean cortical thickness of the left hemi is %f.\n", subject_id, length(groupdata_nat[[subject_id]]), mean(groupdata_nat[[subject_id]]))); # # Output: Subject 'subject1' has 149244 vertices and the mean cortical thickness of the left hemi is 2.437466. ## ---- eval = FALSE------------------------------------------------------------ # groupdata_std = group.morph.standard(subjects_dir, subjects_list, "thickness", "lh", fwhm="10"); ## ---- eval = FALSE------------------------------------------------------------ # cat(sprintf("Data length is %d for subject1, %d for subject2.\n", length(groupdata_std$subject1), length(groupdata_std$subject2))); # # output: Data length is 163842 for subject1, 163842 for subject2. ## ---- eval = FALSE------------------------------------------------------------ # # Load the full hemisphere data, including media wall: # fulldata = group.morph.native(subjects_dir, subjects_list, "thickness", "lh"); # mean(fulldata$subject1); # # # This time, restrict data to the cerebral cortex (the medial wall vertices will get NA values): # cortexdata = group.morph.native(subjects_dir, subjects_list, "thickness", "lh", cortex_only=TRUE); # mean(cortexdata$subject1, na.rm=TRUE); ## ---- eval = FALSE------------------------------------------------------------ # write.group.morph.standard.sf('~/mystudy/group_thickness_lh_fwhm10.mgz', groupdata_std); ## ---- eval = FALSE------------------------------------------------------------ # #groupdata_std = group.morph.standard(subjects_dir, subjects_list, "thickness", "lh", fwhm="10"); # slow # groupdata_std = group.morph.standard.sf('~/mystudy/group_thickness_lh_fwhm10.mgz'); # fast ## ---- eval = FALSE------------------------------------------------------------ # grouplabels = group.label(subjects_dir, subjects_list, "cortex.label", hemi='lh'); # cat(sprintf("The left hemisphere cortex label of subject1 includes %d vertices.\n", length(grouplabels$subject1))); # # output: The left hemisphere cortex label of subject1 includes 140891 vertices. ## ---- eval = FALSE------------------------------------------------------------ # surface = 'white'; # hemi = 'both'; # atlas = 'aparc'; # region = 'bankssts'; # # # Create a mask from a region of an annotation: # lh_annot = subject.annot(subjects_dir, subject_id, 'lh', atlas); # rh_annot = subject.annot(subjects_dir, subject_id, 'rh', atlas); # lh_label = label.from.annotdata(lh_annot, region); # rh_label = label.from.annotdata(rh_annot, region); # lh_mask = mask.from.labeldata.for.hemi(lh_label, length(lh_annot$vertices)); # rh_mask = mask.from.labeldata.for.hemi(rh_label, length(rh_annot$vertices)); # # # Edit the mask: add the vertices from another region to it: # region2 = 'medialorbitofrontal'; # lh_label2 = label.from.annotdata(lh_annot, region2); # rh_label2 = label.from.annotdata(rh_annot, region2); # lh_mask2 = mask.from.labeldata.for.hemi(lh_label2, length(lh_annot$vertices), # existing_mask = lh_mask); # rh_mask2 = mask.from.labeldata.for.hemi(rh_label2, length(rh_annot$vertices), # existing_mask = rh_mask); ## ---- eval = FALSE------------------------------------------------------------ # groupannot = group.annot(subjects_dir, subjects_list, 'lh', 'aparc'); # cat(sprintf("The left hemi of subject2 has %d vertices, and vertex 10 is in region '%s'.\n", length(groupannot$subject2$vertices), groupannot$subject2$label_names[10])); # # output: The left hemi of subject2 has 149244 vertices, and vertex 10 is in region 'lateraloccipital'. ## ---- eval = FALSE------------------------------------------------------------ # mean_thickness_lh_native = group.morph.agg.native(subjects_dir, subjects_list, "thickness", "lh", agg_fun=mean); # mean_thickness_lh_native; # # output: # # subject_id hemi measure_name measure_value # #1 subject1 lh thickness 2.437466 # #2 subject2 lh thickness 2.437466 ## ---- eval = FALSE------------------------------------------------------------ # mean_thickness_lh_std = group.morph.agg.standard(subjects_dir, subjects_list, "thickness", "lh", fwhm="10", agg_fun=mean); # mean_thickness_lh_std; # # output: # subject_id hemi measure_name measure_value # 1 subject1 lh thickness 2.32443 # 2 subject2 lh thickness 2.32443 ## ---- eval = FALSE------------------------------------------------------------ # agg_nat = group.multimorph.agg.native(subjects_dir, subjects_list, c("thickness", "area"), c("lh", "rh"), agg_fun = mean); # head(agg_nat); # # output: # # subject_id hemi measure_name measure_value # #1 subject1 lh thickness 2.4374657 # #2 subject2 lh thickness 2.4374657 # #3 subject1 lh area 0.6690556 # #4 subject2 lh area 0.6690556 # #5 subject1 rh thickness 2.4143047 # #6 subject2 rh thickness 2.4143047 ## ---- eval = FALSE------------------------------------------------------------ # agg_nat2 = group.multimorph.agg.native(subjects_dir, subjects_list, c("thickness", "area"), c("lh", "rh"), agg_fun = mean, cast=FALSE); # head(agg_nat2); # # output: # # subject_id lh.thickness lh.area rh.thickness rh.area # #1 subject1 2.437466 0.6690556 2.414305 0.6607554 # #2 subject2 2.437466 0.6690556 2.414305 0.6607554 ## ---- eval = FALSE------------------------------------------------------------ # data_std = group.multimorph.agg.standard(subjects_dir, subjects_list, c("thickness", "area"), c("lh", "rh"), fwhm='10', agg_fun = mean); # head(data_std); # # output: # # subject_id hemi measure_name measure_value # #1 subject1 lh thickness 2.3244303 # #2 subject2 lh thickness 2.3244303 # #3 subject1 lh area 0.5699257 # #4 subject2 lh area 0.5699257 # #5 subject1 rh thickness 2.2926377 # #6 subject2 rh thickness 2.2926377 ## ---- eval = FALSE------------------------------------------------------------ # data_std_cortex = group.multimorph.agg.standard(subjects_dir, subjects_list, c("thickness", "area"), c("lh", "rh"), fwhm='10', agg_fun = mean, cortex_only=TRUE, agg_fun_extra_params=list("na.rm"=TRUE)); # head(data_std_cortex); ## ---- eval = FALSE------------------------------------------------------------ # atlas = 'aparc'; # or 'aparc.a2009s', or 'aparc.DKTatlas'. # measure = 'thickness'; # region_means_native = group.agg.atlas.native(subjects_dir, subjects_list, measure, "lh", atlas, agg_fun = mean); # head(region_means_native[,1:6]); # # output: # # subject bankssts caudalanteriorcingulate caudalmiddlefrontal cuneus entorhinal # #subject1 subject1 2.485596 2.70373 2.591197 1.986978 3.702725 # #subject2 subject2 2.485596 2.70373 2.591197 1.986978 3.702725 ## ---- eval = FALSE------------------------------------------------------------ # region_means_std = group.agg.atlas.standard(subjects_dir, subjects_list, measure, "lh", atlas, fwhm = '10', agg_fun = mean); # head(region_means_std[1:5]); # # output: # # subject bankssts caudalanteriorcingulate caudalmiddlefrontal cuneus # #subject1 subject1 2.583408 2.780666 2.594696 2.018783 # #subject2 subject2 2.583408 2.780666 2.594696 2.018783 ## ---- eval = FALSE------------------------------------------------------------ # surface = 'white'; # hemi = 'both'; # atlas = 'aparc'; # one of 'aparc', 'aparc.a2009s', or 'aparc.DKTatlas40'. # region = 'bankssts'; # # # Create a label from a region of an annotation or atlas: # lh_annot = subject.annot(subjects_dir, subject_id, 'lh', atlas); # rh_annot = subject.annot(subjects_dir, subject_id, 'rh', atlas); # lh_label = label.from.annotdata(lh_annot, region); # rh_label = label.from.annotdata(rh_annot, region); ## ---- eval = FALSE------------------------------------------------------------ # hemi = "lh" # 'lh' or 'rh' # atlas = "aparc" # an atlas, e.g., 'aparc', 'aparc.a2009s', 'aparc.DKTatlas' # # # Some directory where we can find fsaverage. This can be omitted if FREESURFER_HOME or SUBJECTS_DIR is set, the function will find fsaverage in there by default. Also see the function download_fsaverage(). # template_subjects_dir = "~/software/freesurfer/subjects"; # # region_value_list = list("bankssts"=0.9, "precuneus"=0.7, "postcentral"=0.8, "lingual"=0.6); # # ret = fsbrain::write.region.values.fsaverage(hemi, atlas, region_value_list, output_file="/tmp/lh_spread.mgz", template_subjects_dir=template_subjects_dir, show_freeview_tip=TRUE); # # output: # # To visualize these region values, try: # # freeview -f ${FREESURFER_HOME}/subjects/fsaverage/surf/lh.white:overlay=/tmp/lh_spread.mgz:overlay_method=linearopaque:overlay_threshold=0,100,percentile ## ---- eval = FALSE------------------------------------------------------------ # vis.subject.annot(subjects_dir, 'subject1', 'aparc', 'both', views=c('si')); ## ---- eval = FALSE------------------------------------------------------------ # vis.subject.morph.native(subjects_dir, 'subject', 'thickness', hemi='both', views=c('si')) ## ---- eval = FALSE------------------------------------------------------------ # morph_data_lh = subject.morph.native(subjects_dir, 'subject1', 'thickness', 'lh'); # morph_data_rh = subject.morph.native(subjects_dir, 'subject1', 'thickness', 'rh'); # # Do something with the morph_data here. # vis.data.on.subject(subjects_dir, 'subject1', morph_data_lh, morph_data_rh, views=c('si')); ## ---- eval = FALSE------------------------------------------------------------ # surface = 'white'; # hemi = 'both'; # label = 'cortex.label'; # vis.subject.label(subjects_dir, subject_id, label, hemi); ## ---- eval = FALSE------------------------------------------------------------ # surface = 'white'; # If possible, use the 'inflated' surface instead: it is much easier to find the vertices on it. We do not # # use it here because the inflated surface is not shipped with the example data for this package to reduce download size. # # # For the left hemi, we just specify 3 vertices. They are very small in the high-resolution mesh and may be hard to spot. # my_lh_result_cluster_vertices = c(1000, 1001, 1002); # Would be a lot more than just 3 in real life, and they would be adjacent (these are not). # lh_labeldata = my_lh_result_cluster_vertices; # # # For the right hemi, we extend the neighborhood around our vertices of interest for the visualization. This makes the a lot easier to spot. # my_highest_effect_size_vertex = 5000; # rh_labeldata = c(my_highest_effect_size_vertex); # rh_surface = subject.surface(subjects_dir, subject_id, surface, 'rh'); # rh_labeldata_neighborhood = mesh.vertex.neighbors(rh_surface, rh_labeldata); # extend neighborhood for better visibility # rh_labeldata_neighborhood = mesh.vertex.neighbors(rh_surface, rh_labeldata_neighborhood$vertices); # extend neighborhood again # # # Hint: Check the area around the visual cortex when searching for the vertices in interactive mode. # vis.labeldata.on.subject(subjects_dir, subject_id, lh_labeldata, rh_labeldata_neighborhood$vertices, views=c('si'), surface=surface); ## ---- eval = FALSE------------------------------------------------------------ # surface = 'white'; # hemi = 'both'; # atlas = 'aparc'; # region = 'bankssts'; # # # Create a mask from a region of an annotation: # lh_annot = subject.annot(subjects_dir, subject_id, 'lh', atlas); # rh_annot = subject.annot(subjects_dir, subject_id, 'rh', atlas); # lh_label = label.from.annotdata(lh_annot, region); # rh_label = label.from.annotdata(rh_annot, region); # lh_mask = mask.from.labeldata.for.hemi(lh_label, length(lh_annot$vertices)); # rh_mask = mask.from.labeldata.for.hemi(rh_label, length(rh_annot$vertices)); # # # visualize it # vis.mask.on.subject(subjects_dir, subject_id, lh_mask, rh_mask); ## ---- eval = FALSE------------------------------------------------------------ # atlas = 'aparc'; # template_subject = 'fsaverage'; # # Some directory where we can find the template_subject. This can be omitted if FREESURFER_HOME or SUBJECTS_DIR is set and the template subject is in one of them. In that case, the function will find fsaverage in there by default. Also see the function download_fsaverage(). # template_subjects_dir = "~/software/freesurfer/subjects"; # adapt to your machine # # # # For the left hemi, we manually set data values for some regions. # lh_region_value_list = list("bankssts"=0.9, "precuneus"=0.7, "postcentral"=0.8, "lingual"=0.6); # # # For the right hemisphere, we do something a little bit more complex: first get all atlas region names: # atlas_region_names = get.atlas.region.names(atlas, template_subjects_dir=template_subjects_dir, template_subject=template_subject); # # As mentioned above, if you have fsaverage in your SUBJECTS_DIR or FREESURFER_HOME is set, you could replace the last line with: # #atlas_region_names = get.atlas.region.names(atlas); # # # OK, now that we can check all region names. We will now assign a random value to each region: # rh_region_value_list = rnorm(length(atlas_region_names), 3.0, 1.0); # create 36 random values with mean 3 and stddev 1 # names(rh_region_value_list) = atlas_region_names; # use the region names we retrieved earlier # # # Now we have region_value_lists for both hemispheres. Time to visualize them: # vis.region.values.on.subject(template_subjects_dir, template_subject, atlas, lh_region_value_list, rh_region_value_list); ## ---- eval = FALSE------------------------------------------------------------ # # load mean curv data # meancurv = subject.morph.native(subjects_dir, subject_id, "curv", "both", split_by_hemi = TRUE); # # # curvature data is noisy, clip it for better visualization (optional). # meancurv = lapply(meancurv, clip.data); # # # desaturate colors for left hemisphere # cl$lh = desaturate(cl$lh); # # # visualize it # vis.color.on.subject(subjects_dir, subject_id, cl$lh, cl$rh); ## ---- eval = FALSE------------------------------------------------------------ # fsbrain.set.default.figsize(1200, 1200); ## ---- eval = FALSE------------------------------------------------------------ # rgloptions = list('windowRect'=c(50, 50, 1200, 1200)); ## ---- eval = FALSE------------------------------------------------------------ # vis.subject.morph.native(subjects_dir, 'subject', 'thickness', hemi='both', views=c('t4', 't9')) ## ---- eval = FALSE------------------------------------------------------------ # vis.subject.morph.native(subjects_dir, 'subject', 'thickness', hemi='both', views=c('si'), surface='inflated') ## ---- eval = FALSE------------------------------------------------------------ # rgloptions = list("windowRect"=c(50, 50, 1000, 1000)); # vis.subject.morph.native(subjects_dir, 'subject', 'thickness', hemi='both', views=c('si'), rgloptions=rgloptions) ## ---- eval = FALSE------------------------------------------------------------ # subjects_dir = find.subjectsdir.of("fsaverage")$found_at; # subject_id = 'fsaverage'; # # lh_demo_cluster_file = system.file("extdata", "lh.clusters_fsaverage.mgz", package = "fsbrain", mustWork = TRUE); # rh_demo_cluster_file = system.file("extdata", "rh.clusters_fsaverage.mgz", package = "fsbrain", mustWork = TRUE); # lh_clust = freesurferformats::read.fs.morph(lh_demo_cluster_file); # contains a single positive cluster # rh_clust = freesurferformats::read.fs.morph(rh_demo_cluster_file); # contains two negative clusters # vis.symmetric.data.on.subject(subjects_dir, subject_id, lh_clust, rh_clust, bg="sulc"); ## ---- eval = FALSE------------------------------------------------------------ # subjects_dir = fsbrain::get_optional_data_filepath("subjects_dir"); # subject_id = 'subject1'; # rgloptions=list("windowRect"=c(50, 50, 600, 600)); # the first 2 entries give the position on screen, the rest defines resolution as width, height in px # surface = 'white'; # measure = 'thickness'; # movie_base_filename = sprintf("fsbrain_%s_%s_%s", subject_id, measure, surface); # rglactions = list("movie"=movie_base_filename, "clip_data"=c(0.05, 0.95)); # # Creating a movie requires the rotating view ('sr' for 'single rotating'). The action will be silently ignored in all other views. # vis.subject.morph.native(subjects_dir, subject_id, measure, 'both', views=c('sr'), rgloptions=rgloptions, rglactions=rglactions); ## ---- eval = FALSE------------------------------------------------------------ # subjects_dir = fsbrain::get_optional_data_filepath("subjects_dir"); # subject_id = 'subject1'; # rgloptions=list("windowRect"=c(50, 50, 1000, 1000)); # larger plot # surface = 'white'; # measure = 'thickness'; # vis.subject.morph.native(subjects_dir, subject_id, measure, 'both', views=c('si'), rgloptions=rgloptions, draw_colorbar = TRUE); ## ---- eval = FALSE------------------------------------------------------------ # subjects_dir = fsbrain::get_optional_data_filepath("subjects_dir"); # coloredmeshes = vis.subject.morph.native(subjects_dir, 'subject1', 'thickness', 'lh', views=c('t4'), makecmap_options=list('colFn'=squash::jet)); # coloredmesh.plot.colorbar.separate(coloredmeshes, horizontal=TRUE); ## ---- eval = FALSE------------------------------------------------------------ # coloredmeshes = vis.subject.morph.standard(subjects_dir, 'subject1', 'sulc', rglactions=list('no_vis'=T)); # img = export(coloredmeshes, colorbar_legend='Sulcal depth [mm]', output_img='~/fig1.png'); ## ---- eval = FALSE------------------------------------------------------------ # subjects_list = c('subject1', 'subject2', 'subject3'); # # # Plot standard space thickness for 3 subjects: # vis.group.morph.standard(subjects_dir, subjects_list, 'thickness', fwhm = "5", num_per_row = 3); # # # Plot thickness at 3 different smoothing levels for the same subject: # vis.group.morph.standard(subjects_dir, 'subject1', 'thickness', fwhm = c("0", "10", "20"), num_per_row = 3); # # # Plot Desikan atlas parcellation for 3 subjects: # vis.group.annot(subjects_dir, subjects_list, 'aparc', num_per_row = 3);