### R code from vignette source 'fsdaR.Rnw' ################################################### ### code chunk number 1: wool (eval = FALSE) ################################################### ## library(fsdaR) ## data(wool) ## head(wool) ## ## ## Compute the score test using the five most common values of the ## ## transformation parameter lambda ## ## out <- score(cycles~., data=wool) ## out$Score ## ################################################### ### code chunk number 2: loyalty (eval = FALSE) ################################################### ## data(loyalty) ## head(loyalty) ## ## ## la is a vector containing the values of \lambda which have to be tested ## ## out <- score(amount_spent~., data=loyalty, ## la=c(0.25, 1/3, 0.4, 0.5)) ## out$Score ## ################################################### ### code chunk number 3: ex-1 (eval = FALSE) ################################################### ## ## ## Example 1: original poison data ## library(fsdaR) ## ## data(poison) ## head(poison) ## dim(poison) ## ## set.seed(10) ## ## ## A formula without intercept looks like this: Y~.-1 ## out1 <- fsrfan(Y~.-1, data=poison) # no intercept ## plot(out1, ylim=c(-14, 3)) ## ################################################### ### code chunk number 4: ex-1-order (eval = FALSE) ################################################### ## library(xtable) ## xtab <- out1$Un[,2,] ## largest <- tail(order(poison$Y), nrow(xtab)) ## xtab <- cbind(as.numeric(rownames(xtab)), xtab, largest) ## colnames(xtab)[1] <- "Step" ## colnames(xtab)[ncol(xtab)] <- "Largest Obs." ## print(xtable(tail(xtab), digits=0, ## caption="The last six observations that enter the model. The last column shows the six largest observations.", ## label="tab:ex-1"), include.rownames=FALSE) ## ################################################### ### code chunk number 5: ex-2 (eval = FALSE) ################################################### ## ## ## Example 2: modified poison data (change y[8] from 0.23 to 0.13) ## library(fsdaR) ## data(poison) ## ## poison$Y[8] <- 0.13 ## set.seed(9999) ## out2 <- fsrfan(Y~.-1, data=poison) ## plot(out2, ylim=c(-11, 9)) ################################################### ### code chunk number 6: ex-3 (eval = FALSE) ################################################### ## ## ## Example 3: modified poison data (change y[8] from 0.23 to 0.13 ## ## and y[38] from 0.71 to 0.14) ## library(fsdaR) ## data(poison) ## ## poison$Y[8] <- 0.13 ## poison$Y[38] <- 0.14 ## ## out3 <- fsrfan(Y~.-1, data=poison) ## plot(out3, ylim=c(-8, 11)) ################################################### ### code chunk number 7: ex-4 (eval = FALSE) ################################################### ## ## ## Example 4: modified poison data (four observations are changed) ## library(fsdaR) ## data(poison) ## ## poison$Y[6] <- 0.14 ## poison$Y[9] <- 0.08 ## poison$Y[10] <- 0.07 ## poison$Y[11] <- 0.06 ## ## out4 <- fsrfan(Y~.-1, data=poison, init=10) ## plot(out4, ylim=c(-10, 22)) ################################################### ### code chunk number 8: ex-4a-compute (eval = FALSE) ################################################### ## ## ## Example 4a: modified poison data (four observations ## ## are changed) with the reciprocal transformation ## poison$Y <- poison$Y ^ (-1) ## set.seed(1234) ## out4a <- fsreg(Y~.-1, data=poison, method="LMS", msg=FALSE) ## out4a <- fsreg(Y~.-1, data=poison, monitoring=TRUE, ## lms=out4a.bs, msg=FALSE) ## ## ## Monitoring the scaled residuals: a label is written ## ## for the residuals greater than 2 ## resfwdplot(out4a, fg.thresh=2) ################################################### ### code chunk number 9: ex-4b-compute (eval = FALSE) ################################################### ## ## ## Example 4b: automatic outlier detection for the ## ## modified poison data (four observations are changed) ## ## with the reciprocal transformation ## ## set.seed(1234) ## out4b <- fsreg(Y~.-1, data=poison, control=FSR_control(plot=2, msg=FALSE))