## ------------------------------------------------------------------------ library(fsthet) gfile<-system.file("extdata", "example.genepop.txt",package = 'fsthet') gpop<-my.read.genepop(gfile) ## ------------------------------------------------------------------------ fsts<-calc.actual.fst(gpop) head(fsts) #Plot the actual values to see what your distribution looks like par(mar=c(4,4,1,1)) plot(fsts$Ht, fsts$Fst,xlab="Ht",ylab="Fst",pch=19) ## ------------------------------------------------------------------------ quant.out<-fst.boot(gpop, bootstrap = FALSE) str(quant.out) head(quant.out[[3]][[1]]) ## ------------------------------------------------------------------------ head(fsts) bins<-make.bins(fsts) cis<-find.quantiles(bins = bins$bins,bin.fst = bins$bin.fst) str(cis) ## ------------------------------------------------------------------------ cis.list<-find.quantiles(bins = bins$bins,bin.fst = bins$bin.fst,ci=c(0.01,0.05)) str(cis.list) ## ------------------------------------------------------------------------ #extract the confidence interavls quant.list<-ci.means(quant.out[[3]]) head(quant.list) #Alternatively quant.list<-cis$CI0.95 head(quant.list) #plot the results par(mar=c(4,4,1,1)) plotting.cis(df=fsts,ci.df=quant.list,make.file=F) ## ------------------------------------------------------------------------ outliers<-find.outliers(fsts,boot.out=quant.out) head(outliers) ## ------------------------------------------------------------------------ out.dat<-fsthet(gpop) head(out.dat) ## ----eval=F-------------------------------------------------------------- # plotting.cis(df=fsts,boot.out=boot.out,make.file=T,file.name="ExampleOutliers.png") ## ------------------------------------------------------------------------ fst.options.print() ## ------------------------------------------------------------------------ fsts<-calc.actual.fst(gpop,"fst") ## ------------------------------------------------------------------------ fsts.theta<-calc.actual.fst(gpop,"theta") ## ------------------------------------------------------------------------ fsts.beta<-calc.actual.fst(gpop,"var") ## ------------------------------------------------------------------------ fsts.betahat<-calc.actual.fst(gpop,"betahat") ## ------------------------------------------------------------------------ #get the quantiles quant.list<-ci.means(quant.out[[3]]) #create a data.frame of confidence intervals qs<-as.data.frame(do.call(cbind,quant.list)) colnames(qs)<-c("low","upp") qs$Ht<-as.numeric(rownames(qs)) #plot par(mar=c(4,4,1,1)) plot(fsts$Ht, fsts$Fst,pch=19,xlab="Ht",ylab="Fst") points(qs$Ht,qs$low,type="l",col="red") points(qs$Ht,qs$upp,type="l",col="red") ## ------------------------------------------------------------------------ af.actual<-apply(gpop[,3:ncol(gpop)],2,calc.allele.freq) #extract the minimum allele frequency for each locus min.af<-unlist(lapply(af.actual,min)) par(mar=c(2,2,2,2)) hist(min.af)