## ----------------------------------------------------------------------------- library("gambin") data(moths, package="gambin") ##unimodal model fit = fit_abundances(moths) fit$alpha barplot(fit) points(fit) AIC(fit) ##unimodal model (fit to a subsample of 1000 individuals) fit2 = fit_abundances(moths, subsample = 1000) fit2$alpha barplot(fit2) points(fit2) AIC(fit2) ##bimodal model (using 3 cores) #simulate bimodal gambin distribution x1 = rgambin(600, 5, 10) x2 = rgambin(300, 1, 10) x = table(c(x1,x2)) freq = as.vector(x) values = as.numeric(as.character(names(x))) abundances = data.frame(octave=values, species = freq) #fit bimodal model to simulated data fit3 = fit_abundances(abundances, no_of_components = 2, cores = 1) barplot(fit3) points(fit3) AIC(fit3) #compare with AIC of unimodal model AIC(fit_abundances(abundances)) #fit a bimodal model to a species classification dataset #and calculate the number of the differet categories in each octave data(categ, package="gambin") fits2 = fit_abundances(categ$abundances, no_of_components = 2) d1 <- deconstruct_modes(fits2, dat = categ, peak_val = NULL, abundances = "abundances", species = "species", categ = "status", col.statu = c("green", "red", "blue"), plot_legend = FALSE) #do the same but don't provide category data - this just highlights the modal octaves d2 <- deconstruct_modes(fits2, dat = categ, peak_val = NULL, abundances = "abundances", species = "species", categ = NULL)