## ------------------------------------------------------------------------ X <- matrix( rnorm( 1000 ), 20, 50 ) y <- rnorm( 20 ) ## ------------------------------------------------------------------------ A <- matrix( sample( 0:1, 50*50, repl=TRUE ), 50, 50 ) A <- A & t(A) ## Make the matrix symmetric ## ------------------------------------------------------------------------ library( gelnet ) L <- adj2nlapl(A) ## ------------------------------------------------------------------------ model <- gelnet( X, y, 0.1, 1, P = L ) ## ------------------------------------------------------------------------ Xnew <- matrix( rnorm( 500 ), 10, 50 ) Xnew %*% model$w + model$b ## ------------------------------------------------------------------------ y <- factor( y > 0, levels=c(TRUE,FALSE) ) model2 <- gelnet( X, y, 0.1, 1, P=L ) ## ------------------------------------------------------------------------ data.frame( scores= X %*% model2$w + model2$b, labels= y ) ## ------------------------------------------------------------------------ model2bal <- gelnet( X, y, 0.1, 1, P=L, balanced=TRUE ) data.frame( scores= X %*% model2bal$w + model2bal$b, labels= y ) ## ------------------------------------------------------------------------ j <- which( y == TRUE ) model1 <- gelnet( X[j,], NULL, 0.1, 1, P=L ) ## ------------------------------------------------------------------------ data.frame( scores= X %*% model2bal$w + model2bal$b, labels= y )