Title: | Automated Gene Identification for Post-GWAS and QTL Analysis |
Version: | 2.0.1 |
Description: | Facilitates the post-Genome Wide Association Studies (GWAS) and Quantitative Trait Loci (QTL) analysis of identifying candidate genes within user-defined search window, based on the identified Single Nucleotide Polymorphisms (SNPs) as given by Mazumder AK (2024) <doi:10.1038/s41598-024-66903-3>. It supports candidate gene analysis for wheat and rice. Just import your GWAS result as explained in the sample_data file and the function does all the manual search and retrieve candidate genes for you, while exporting the results into ready-to-use output. |
License: | CC BY 4.0 |
Copyright: | (C) 2025 Nirmalaruban |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Depends: | R (≥ 3.5) |
LazyData: | TRUE |
Imports: | readr, stringr, utils, httr, rvest, xml2, writexl, vcfR, ggplot2, ggrepel |
Suggests: | knitr, rmarkdown, devtools |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2025-03-29 16:27:50 UTC; nirma |
Author: | Rajamani Nirmalaruban [aut, cre, cph], R. Suvitha [aut], Rajbir Yadav [aut], Meda Alekya [aut], Amit Kumar Mazumder [aut], Subramani Sugumar [aut], Prashanth babu [aut], Manjeet Kumar [aut], Kiran B Gaikwad [aut], Naresh Kumar Bainsla [aut], S. Bhaskar Reddy [aut] |
Maintainer: | Rajamani Nirmalaruban <nirmalaruban97@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-03-29 16:50:02 UTC |
Identifies Candidate Genes based on identified Quantitative Trati Loci (QTL) analysis
Description
Identifies Candidate Genes based on identified Quantitative Trati Loci (QTL) analysis
Usage
geneQTL(data_file, crop = "wheat")
Arguments
data_file |
The input data in .csv format. (sample_data_wheat_qtl or sample_data_rice_qtl for demo purpose) |
crop |
Either "wheat" or "rice". (by default it will be wheat) |
Value
A data frame containing traits, QTL, gene_id, gene_size, and gene_type.
Examples
load(system.file("extdata", "precomputed_sample_results_qtl.rda", package = "geneNR"))
message(sample_results)
result <- geneQTL("sample_data_wheat_qtl", crop="wheat")
result <- geneQTL("sample_data_rice_qtl", crop="rice")
#result <- geneQTL("your_results.csv", crop="wheat")
Identifies Candidate Genes based on identified Single Nucleotide Ploymorphisms (SNPs) from Genome Wide Association Stuides (GWAS) Analysis
Description
Identifies Candidate Genes based on identified Single Nucleotide Ploymorphisms (SNPs) from Genome Wide Association Stuides (GWAS) Analysis
Usage
geneSNP(data_file, upstream = 1e+06, downstream = 1e+06, crop = "wheat")
Arguments
data_file |
The input data in .csv format. (sample_data_wheat or sample_data_rice for demo purpose) |
upstream |
The search window upstream of the current position of the SNP. (default: 1000000) |
downstream |
The search window downstream of the current position of the SNP. (default: 1000000) |
crop |
Either "wheat" or "rice". (default: wheat) |
Value
A data frame containing traits, SNP, gene_id, gene_size, and gene_type.
Examples
load(system.file("extdata", "precomputed_sample_results.rda", package = "geneNR"))
message(sample_results)
result <- geneSNP("sample_data_wheat", 10000, 10000, crop = "wheat")
result <- geneSNP("sample_data_rice", 10000, 10000, crop = "rice")
Identifies Candidate Genes based on identified Single Nucleotide Ploymorphisms (SNPs) from Genome Wide Association Stuides (GWAS) Analysis
Description
Identifies Candidate Genes based on identified Single Nucleotide Ploymorphisms (SNPs) from Genome Wide Association Stuides (GWAS) Analysis
Usage
geneSNPcustom(data_file, crop = "wheat")
Arguments
data_file |
The input data in .csv format. (sample_data_wheat_custom for demo purpose) |
crop |
Either "wheat" or "rice". (default: wheat) |
Value
A data frame containing traits, SNP, gene_id, gene_size, and gene_type.
Examples
load(system.file("extdata", "precomputed_sample_results_custom.rda", package = "geneNR"))
message(sample_results)
result <- geneSNPcustom("sample_data_wheat_custom", crop = "wheat")
Imports Hapmap genotypic data file
Description
Imports Hapmap genotypic data file
Usage
import_hmp(file_path, header = TRUE, sep = "\t", stringsAsFactors = FALSE)
Arguments
file_path |
Provide the actual path of Hapmap genotypic data file |
header |
by default it will be True |
sep |
by default it will be tab separated |
stringsAsFactors |
by default it will be False |
Value
Hampmap genotypic data
Examples
demo_SNP <- system.file("extdata", "demo_SNP.hmp.txt", package = "geneNR")
hapmap_data <- import_hmp(demo_SNP)
head(hapmap_data)
Imports VCF (Variant Call Format) data file
Description
Imports VCF (Variant Call Format) data file
Usage
import_vcf(file_path)
Arguments
file_path |
Provide the actual path of the VCF file |
Value
A vcfR
object containing the imported data
Examples
demo_SNP <- system.file("extdata", "demo_SNP.vcf", package = "geneNR")
vcf_data <- import_vcf(demo_SNP)
vcf_data
Plot SNP Distribution on Chromosome Map
Description
Plots SNP positions across chromosomes with centromere markers using given chromosome details and SNP data.
Usage
plot_SNP(
chromosome_details,
data,
chromosome_color = "steelblue",
title = "Chromosome map with SNPs",
label_color = "black",
image_width = 10,
image_height = 10
)
Arguments
chromosome_details |
A data frame containing chromosome details with columns |
data |
A data frame containing SNP data with columns |
chromosome_color |
Color of the chromosome bars (default: "skyblue"). |
title |
Title of the chromosome plot depicting the identified SNPs |
label_color |
Color of the SNP labels (default: "black"). |
image_width |
width of the chromosome plot |
image_height |
height of the chromosome plot |
Value
A ggplot
object for the SNP distribution plot.
Examples
chromosome_details <- read.csv(system.file("extdata", "chromosome_details.csv", package = "geneNR"))
data <- read.csv(system.file("extdata", "identified_SNP.csv", package = "geneNR"))
chromosome_plot <- plot_SNP(chromosome_details = chromosome_details, data = data,
chromosome_color = "steelblue" ,title = "Chromosome map with SNPs", label_color = "black",
image_width = 15, image_height = 10)
print(chromosome_plot)
Plot SNP Distribution Across Chromosomes
Description
Creates a bar chart representing the distribution of SNPs across chromosomes. Allows customization of bar color, label size, and label color. Saves the plot to a user-specified directory or a temporary directory.
Usage
plot_summariseSNP(
snp_distribution,
file_name = "snp_bar_chart.jpeg",
output_dir = tempdir(),
bar_color = "lightblue",
label_size = 3,
label_color = "black"
)
Arguments
snp_distribution |
A data frame with columns |
file_name |
The name of the file to save the plot (default: "snp_bar_chart.jpeg"). |
output_dir |
The directory to save the file (default: |
bar_color |
The color of the bars (default: "lightblue"). |
label_size |
The size of the text labels on the bars (default: 3). |
label_color |
The color of the text labels on the bars (default: "black"). |
Value
A ggplot
object for the created bar chart.
Examples
demo_SNP <- system.file("extdata", "demo_SNP.hmp.txt", package = "geneNR")
data <- import_hmp(demo_SNP)
snp_distribution <- summariseSNP(data)
plot <- plot_summariseSNP(snp_distribution, bar_color = "skyblue",
label_size = 3, label_color = "red")
print(plot)
Sample Data
Description
A dataset containing sample data related to genetic markers and associated traits.
Usage
sample_data_rice
Format
A data frame with columns:
- SNP
SNP identifier, character.
- Chr
Chromosome location, character.
- Pos
Position on the chromosome, numeric.
- traits
Associated traits, character.
Source
Basha FTM, Sar P, Bhowmick PK, Mahato A, Bisht DS, Iquebal MA, Chakraborty K, Banerjee A, Verma BC, Bhaduri D, Kumar J, Ngangkham U, Saha S, Priyamedha, Mandal NP, Roy S. Genome-wide association study identified QTLs and genes underlying early seedling vigour in aus rice (Oryza sativa L.). Mol Genet Genomics. 2024 Dec 3;299(1):112. doi: 10.1007/s00438-024-02204-8. PMID: 39625651.
Examples
data(sample_data_rice) #lazy loading
Sample Data
Description
A dataset containing sample data related to genetic markers and associated traits.
Usage
sample_data_rice_qtl
Format
A data frame with columns:
- traits
Associated traits, character.
- Chr
Chromosome location, character.
- start
Position on the chromosome where QTL starts, numeric.
- stop
Position on the chromosome where QTL stops, numeric.
Source
Generated for demonstration purposes
Examples
data(sample_data_rice_qtl) #lazy loading
Sample Data
Description
A dataset containing sample data related to genetic markers and associated traits.
Usage
sample_data_wheat
Format
A data frame with columns:
- SNP
SNP identifier, character.
- Chr
Chromosome location, character.
- Pos
Position on the chromosome, numeric.
- traits
Associated traits, character.
Source
Generated for demonstration purposes
Examples
data(sample_data_wheat) #lazy loading
Sample Data
Description
A dataset containing sample data related to genetic markers and associated traits.
Usage
sample_data_wheat_custom
Format
A data frame with columns:
- traits
Associated traits, character.
- SNP
SNP identifier, character.
- Chr
Chromosome location, character.
- start
Position on the chromosome where search window starts, numeric.
- stop
Position on the chromosome where search window stops, numeric.
Source
Generated for demonstration purposes
Examples
data(sample_data_wheat_custom) #lazy loading
Sample Data
Description
A dataset containing sample data related to genetic markers and associated traits.
Usage
sample_data_wheat_qtl
Format
A data frame with columns:
- traits
Associated traits, character.
- Chr
Chromosome location, character.
- start
Position on the chromosome where QTL starts, numeric.
- stop
Position on the chromosome where QTL stops, numeric.
Source
Generated for demonstration purposes
Examples
data(sample_data_wheat_qtl) #lazy loading
Distribution of SNPs Across Chromosomes
Description
Distribution of SNPs Across Chromosomes
Usage
summariseSNP(data)
Arguments
data |
A data frame containing a column named |
Value
A data frame with chromosome names and the count of SNPs for each chromosome
Examples
demo_SNP <- system.file("extdata", "demo_SNP.hmp.txt", package = "geneNR")
data <- import_hmp(demo_SNP)
snp_distribution <- summariseSNP(data)
print(snp_distribution)
Distribution of SNPs Across Chromosomes from VCF
Description
Distribution of SNPs Across Chromosomes from VCF
Usage
summariseSNP_vcf(vcf_data)
Arguments
vcf_data |
A |
Value
A data frame with chromosome names and the count of SNPs for each chromosome.
Examples
demo_SNP <- system.file("extdata", "demo_SNP.vcf", package = "geneNR")
vcf_data <- import_vcf(demo_SNP)
snp_distribution <- summariseSNP_vcf(vcf_data)
print(snp_distribution)