## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=F------------------------------------------------------------------- # obj <- fut(alpha, beta, t, gamma, side = 2, si = 0, scale = "CP") ## ----eval=F------------------------------------------------------------------- # summary(obj) ## ----setup-------------------------------------------------------------------- ## load the package library(grpseq) ## two-sided level 0.05 test with 80% power; ## evenly spaced three futility looks with predictive power 20%; ## inflate sample size to recoup power. obj1 <- fut(alpha=0.05,beta=0.2,t=(1:3)/4,gamma=0.2*rep(1,3),side=2,scale="PP",si=1) obj1 ## ----------------------------------------------------------------------------- ## do the same thing without sample size inflation obj2 <- fut(alpha=0.05,beta=0.2,t=(1:3)/4,gamma=0.2*rep(1,3),side=2,scale="PP",si=0) obj2 ## print the summary results summary(obj2) ## ---- fig.height = 5, fig.width=7.2------------------------------------------- oldpar <- par(mfrow = par("mfrow")) par(mfrow=c(1,2)) ## plot the futility boundaries by z-value plot(obj2,scale='z',lwd=2,main="") ## plot the futility boundaries by B-value plot(obj2,scale='b',lwd=2,main="") par(oldpar) ## ---- fig.height = 5, fig.width=7.2------------------------------------------- ## plot the power curve as a function of the (local) ## effect size in units of the hypothesized effect size ## ref=TRUE requests the power curve for the original one-time analysis powerplot(obj2,lwd=2, ref=TRUE)