## ---- include = FALSE---------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- eval = FALSE------------------------------------------------------- # install.packages("hdbm") # ## ---- eval = FALSE------------------------------------------------------- # # install.packages(devtools) # devtools::install_github("umich-cphds/hdbm", built_opts = c()) ## ------------------------------------------------------------------------ library(hdbm) # print just the first 10 columns head(hdbm.data[,1:10]) ## ------------------------------------------------------------------------ Y <- hdbm.data$y A <- hdbm.data$a # grab the mediators from the example data.frame M <- as.matrix(hdbm.data[, paste0("m", 1:100)], nrow(hdbm.data)) # We just include the intercept term in this example. C <- matrix(1, nrow(M), 1) # Initial guesses for coefficients beta.m <- rep(0, ncol(M)) alpha.a <- rep(0, ncol(M)) set.seed(12345) # It is recommended to pick a larger number for burnin. hdbm.out <- hdbm(Y, A, M, C, C, beta.m, alpha.a, burnin = 1000, ndraws = 100) # Which mediators are active? active <- which(colSums(hdbm.out$r1 * hdbm.out$r3) > 100 / 2) colnames(M)[active]