## ---- message=FALSE, warning=FALSE-------------------------------------------- library(lans2r) library(dplyr) library(knitr) folder <- system.file("extdata", "nanosims_data", package = "lans2r") # data base directory ## ----------------------------------------------------------------------------- data <- load_LANS_summary ( analysis = c("analysis1", "analysis2", "analysis3"), # the analysis folders base_dir = folder, # the data base director load_zstacks = TRUE, # whether to load z-stacks as well (have to be exported from LANS!) info = c("turtle", "jetpack", "pizza"), # any additional information about the analyses quiet = FALSE # output information about the files ) ## ----------------------------------------------------------------------------- data <- data %>% calculate_sums(c(`13C`, `12C`), c(`15N12C`, `14N12C`)) %>% calculate_ratios(c(`13C`, `12C`), c(`15N12C`, `14N12C`), c(`13C+12C`, `15N12C+14N12C`)) %>% calculate_abundances(c(`13C`, `12C`), c(`15N12C`, `14N12C`)) ## ----------------------------------------------------------------------------- data <- data %>% mutate(F13C_natural = 1.11/100, F15N_natural = 0.366/100) %>% calculate( data_type = "APE", c(`13C F`, `F13C_natural`, `13C F sigma`), c(`15N12C F`, `F15N_natural`, `15N12C F sigma`), # calculate the APE value as the fractional abundance enrichment above natural value_fun = function(val, nat, sigma) 100*(val - nat), # assume the error in natural abundance is negligible so only F error propagates error_fun = function(val, nat, sigma) 100*sigma, # replace the F in the existing columnes with APE to make the new variable name_fun = function(val, ...) sub("F", "APE [%]", deparse(substitute(val))) ) ## ---- warning=FALSE----------------------------------------------------------- data %>% head(n=10) %>% knitr::kable() ## ----------------------------------------------------------------------------- data %>% spread_data() %>% head(n=10) %>% kable() ## ----------------------------------------------------------------------------- data %>% filter(data_type %in% c("abundance", "APE"), plane == "1", ROI < 4) %>% spread_data(errors = FALSE) %>% kable() ## ---- fig.width = 12, fig.height = 8------------------------------------------ library(ggplot2) data %>% ggplot() + aes(size, value, color = paste(analysis, info), shape = plane) + geom_errorbar(aes(ymin = value - 2*sigma, ymax = value + 2*sigma), colour="black", width = 0) + geom_point(size=3) + labs(x = expression("ROI size ["*mu*"m"^2*"]"), y="", title = expression("ROI summary (2"*sigma*" error bars, may be smaller than symbols)"), color = "Analysis") + facet_wrap(~variable, scales="free", nrow = 2) + theme_bw() ## ---- fig.width = 6, fig.height = 6------------------------------------------- last_plot() %+% (data %>% filter(plane == "all", data_type == "ratio")) ## ----------------------------------------------------------------------------- maps <- load_LANS_maps ( analysis = c("analysis1", "analysis2", "analysis3"), base_dir = folder ) ## ----------------------------------------------------------------------------- maps %>% head(n=10) %>% kable() ## ---- fig.width = 12, fig.height = 14----------------------------------------- plot_maps(maps) ## ---- fig.width = 10, fig.height = 8------------------------------------------ plot_maps(maps %>% filter(variable == "14N12C", analysis %in% c("analysis1", "analysis2")), normalize = FALSE, draw_ROIs = FALSE) + theme(legend.position = "right") + labs(fill = "ion count")