## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- # Load libraries library(RColorBrewer) library(ggplot2) library(dplyr) library(reshape2) library(latex2exp) library(lddmm) theme_set(theme_bw(base_size = 14)) cols = brewer.pal(9, "Set1") ## ----eval = FALSE, results = 'hide', fig.show = 'hide', warning = FALSE, message = FALSE---- # # Load the data # data('data') # # # Descriptive plots # plot_accuracy(data) # plot_RT(data) # # # Run the model # hypers = NULL # hypers$s_sigma_mu = hypers$s_sigma_b = 0.1 # # # Change the number of iterations when running the model # # Here the number is small so that the code can run in less than 1 minute # Niter = 25 # burnin = 15 # thin = 1 # samp_size = (Niter - burnin) / thin # # set.seed(123) # fit = LDDMM(data = data, # hypers = hypers, # Niter = Niter, # burnin = burnin, # thin = thin) # # # Plot the results # plot_post_pars(data, fit, par = 'drift') # plot_post_pars(data, fit, par = 'boundary') # # # Compute the WAIC to compare models # compute_WAIC(fit)