
Package ‘m61r’
January 13, 2026

Type Package

Version 0.1.0

Title Package About Data Manipulation in Pure Base R

Description A lightweight, dependency-free data engine for R that provides
a grammar for tabular and time-series manipulation. Built entirely on
Base R, 'm61r' offers a fluent, chainable API inspired by modern data
tools while prioritizing memory efficiency and speed. It includes
optimized versions of common data verbs such as filtering, mutation,
grouped aggregation, and approximate temporal joins, making it an
ideal choice for environments where external dependencies are
restricted or where performance in pure R is required.

Depends R (>= 4.2.0)

License MIT + file LICENSE

URL https://github.com/pv71u98h1/m61r/

BugReports https://github.com/pv71u98h1/m61r/issues/

Encoding UTF-8

Language en-GB

RoxygenNote 7.3.3

VignetteBuilder knitr

Suggests knitr, rmarkdown

NeedsCompilation no

Author Jean-Marie Lepioufle [aut, cre]

Maintainer Jean-Marie Lepioufle <pv71u98h1@gmail.com>

Repository CRAN

Date/Publication 2026-01-13 00:50:28 UTC

1

https://github.com/pv71u98h1/m61r/
https://github.com/pv71u98h1/m61r/issues/

2 m61r-package

Contents
m61r-package . 2
across . 3
arrange . 4
case_when . 4
cut_time . 5
explode . 6
expression . 7
filter . 8
get_group_indices_ . 9
io_csv . 10
join . 11
join_asof . 13
m61r . 15
mutate . 19
reshape . 20
select . 22
summarise . 23
value . 24

Index 26

m61r-package High-Performance Data Manipulation with Pure Base R

Description

The m61r package provides a suite of optimized functions for tabular data manipulation, The design
prioritizes computational speed and a clean, readable data-processing grammar. The package got
highly inspired by modern data manipulation packages, while exclusively built upon the Base R
environment.

Details

The core of m61r is the Base R Data Manipulation Grammar, implemented through two layers:

• Primitives (e.g., filter_, arrange_): These are the raw, optimized functions operating di-
rectly on Base R data.frame objects. They are designed for maximum computational effi-
ciency.

• m61r Object (m61r() constructor): This S3 class provides a pipeline interface, allowing a
sequence of operations (e.g., $filter(), $mutate()) to be chained cleanly.

The Base R Formula Domain-Specific Language: All manipulation functions (like filter,
mutate, group_by, select, summarise) utilise a formula syntax (~<expression>). This ensures
Non-Standard Evaluation can access column names directly within the context of the data frame.

Date and Time Handling: For complex grouping or filtering on date-time columns (Date or
POSIXct), users must employ standard Base R functions within the formula expression to extract

across 3

components. For instance, to group by the year of a column named DateColumn, one must use Base
R format function: ~format(DateColumn, "%Y")

For detailed documentation, see the individual function reference pages.

across Apply a function across multiple columns

Description

The across function allows you to apply the same transformation or aggregation to multiple columns
simultaneously. It is designed to be used within summarise_, mutate_, or transmutate_ methods.

Usage

across(cols, FUN, ...)

Arguments

cols A character vector of column names, a numeric vector of column indices, or a
predicate function (e.g., is.numeric) to select columns.

FUN A function to be applied to each of the selected columns.
... Additional arguments passed to the function FUN.

Details

This function provides a concise way to perform operations on multiple columns at once. It inter-
nally accesses the data subset (.SD) of the current group or data frame. If cols is a function, it acts
as a filter to select all columns for which the function returns TRUE.

Value

A list where each element represents the result of FUN applied to a selected column. When used
within summarise_, this list is automatically flattened into separate columns.

Examples

Usage within an m61r pipeline for aggregation
p <- m61r(mtcars)
p$summarise(

avg = ~across(c("mpg", "disp", "hp"), mean)
)
p[]

Usage with a predicate function to select numeric columns
p <- m61r(iris)
p$summarise(

stats = ~across(is.numeric, sd, na.rm = TRUE)
)
p[]

4 case_when

arrange Arrange your data.frames

Description

Re-arrange your data.frame in ascending or descending order given one or several columns.

Usage

arrange_(df, ...)
desange_(df, ...)

Arguments

df A data.frame.

... A formula used for arranging the data.frame (e.g., ~c(col1, col2)).

Value

The functions return an object of the same type as df. Properties:

• Columns are not modified.

• Output rows are in the order specified by the formula.

• Data frame attributes are preserved.

Examples

tmp <- arrange_(CO2, ~c(conc))
head(tmp)

co2 <- m61r(df = CO2)
co2$arrange(~c(conc))
co2$head()

case_when Logic within a dataframe

Description

The case_when function provides a vectorised approach to multiple if_else conditions in a read-
able and efficient way. It evaluates conditions sequentially and assigns values as soon as a condition
is satisfied.

Usage

case_when(...)

cut_time 5

Arguments

... A sequence of condition/value pairs, ending with a default value (default).
Format: condition1, value1, condition2, value2, ..., default.

Details

This function is optimized for use inside mutate_ or transmutate_ methods. The final argument
acts as the fallback value (the "otherwise" branch) if all preceding conditions evaluate to FALSE.

Value

An atomic vector of the same length as the input conditions. The output type (e.g., character,
numeric) is determined by the types of the values provided.

Examples

Independent usage
x <- 1:10
res <- case_when(

x <= 3, "Small",
x <= 7, "Medium",
"Large" # Default/Otherwise value

)

Usage with an m61r pipeline
tmp <- m61r(mtcars)
tmp$mutate(

efficiency_cat = ~case_when(
mpg > 25, "Economical",
mpg > 15, "Standard",
"High Consumption"

)
)
tmp

cut_time Binning Date and Time Columns

Description

cut_time is a helper function designed to generate expressions for binning POSIXct or Date
columns into specific time intervals. It is primarily intended for use within mutate calls to cre-
ate grouping variables for time-series analysis.

Usage

cut_time(var, breaks_str)

6 explode

Arguments

var The symbol of the date or time column (e.g., timestamp).

breaks_str A character string specifying the time interval (e.g., "hour", "day", "week",
"month"). This is passed directly to the breaks argument of Base R cut func-
tion.

Details

This function uses substitute to create a symbolic call to base::cut. When used inside an m61r
pipeline, it allows for high-performance temporal bucketing.

Value

A language object (call) representing the binning operation, which is evaluated within the context
of the data frame.

Examples

df_time <- data.frame(
timestamp = seq(as.POSIXct("2025-01-01"), by = "15 mins", length.out = 100),
value = rnorm(100)

)

tmp <- m61r(df_time)

tmp$mutate(day_bin = ~eval(cut_time(timestamp, "day")))

tmp$group_by(~day_bin)
tmp$summarise(daily_avg = ~mean(value))

tmp$head()

explode Flattening a List-column

Description

The explode method flattens a list-column, creating a new row for every element in the list while
duplicating the values of all other columns.

Usage

Within an m61r object
tmp$explode(column)

Arguments

column A character string specifying the name of the list-column to be flattened.

expression 7

Details

This operation is particularly useful after creating temporal sequences or ranges using Map() or
seq(). It transforms "nested" data into a "long" format suitable for standard aggregations.

Technically, it uses rep() to replicate row indices based on the length of each list element, ensuring
maximum performance for large data frames.

Value

The function updates the internal data frame of the m61r object invisibly.

Examples

df <- data.frame(
id = 1:2,
tags = I(list(c("A", "B"), c("C", "D", "E")))

)

tmp <- m61r(df)

This will result in 2 rows for id 1 and 3 rows for id 2
tmp$explode("tags")

tmp

Time-Series Example
df_time <- data.frame(

id = 1,
start = as.POSIXct("2025-01-01 08:00"),
end = as.POSIXct("2025-01-01 13:00")

)

tmp <- m61r(df_time)
Create a sequence of hours
tmp$mutate(hour_slot = ~Map(function(s, e) seq(s, e, by = "hour"), start, end))
Explode to get one row per hour
tmp$explode("hour_slot")
tmp

expression Evaluate Formula Expressions on Data Subsets

Description

The core engine for Non-Standard Evaluation within m61r. expression_ evaluates a user-provided
formula within the context of a data frame, optionally for calculated groups. The result relies on the
Base R functions with and eval.

8 filter

Usage

expression_(df, group_info = NULL, fun_expr)

Arguments

df data.frame

group_info An optional list of grouping indices and keys, typically generated by get_group_indices_().
If NULL, the expression runs over the entire df.

fun_expr A formula (~<expression>) that describes the R code to be executed.

Value

The function returns a list.

• If group_info is NULL, the list contains the result of fun_expr executed on the entire df.

• If group_info is provided, the list contains the results of fun_expr executed on each group’s
subset of the df.

Examples

Non-Grouped Evaluation (for mutate)
expression_(CO2,fun_expr=~conc/uptake)

Grouped Evaluation (for summarise)
group_info <- get_group_indices_(CO2, ~Type)
expression_(CO2, group_info = group_info, fun_expr=~mean(uptake))

Complex Grouped Evaluation (results in a list per group)
expression_(CO2, group_info = group_info, fun_expr=~lm(uptake~conc))

filter filter a data.frame

Description

Filter rows of a data.frame with conditions.

Usage

filter_(df, subset = NULL)

Arguments

df data.frame

subset formula that describes the conditions

get_group_indices_ 9

Value

The function returns an object of the same type as df. Properties:

• Columns are not modified.

• Only rows following the condition determined by

• subset appear.

• Data frame attributes are preserved.

Examples

tmp <- filter_(CO2,~Plant=="Qn1")
head(tmp)

tmp <- filter_(CO2,~Type=="Quebec")
head(tmp)

with m61r class
co2 <- m61r(df=CO2)

co2$filter(~Plant=="Qn1")
co2

co2$filter(~Type=="Quebec")
co2

get_group_indices_ Determine Grouping Structure for a data.frame

Description

get_group_indices_ calculates the necessary indices and keys for efficient grouped operations
(like summarise_). This mechanism uses Base R interaction for group factor calculation.

Usage

get_group_indices_(df, group = NULL)

Arguments

df data.frame

group A formula (~<expression>) that describes the grouping columns. Column
names can be listed in a vector (e.g., ~c(colA, colB)). Base R functions may
be nested to process columns (e.g., for date-time components).

10 io_csv

Value

get_group_indices_ returns a list containing: group_cols (names), indices (a list of row indices
per group, for fast subsetting), and keys (a data frame of unique group combinations).

Examples

g_info <- get_group_indices_(CO2, ~c(Type, Treatment))
summarise_(CO2, group_info = g_info, mean = ~mean(uptake))

Grouping with a Base R function: Group by the 'year' of a column 'Date'
df_date <- data.frame(

Date = seq(as.Date("2020-01-01"), by = "month", length.out = 12),
Value = 1:12

)

Usage within the m61r pipeline:
df_date_m61r <- m61r(df_date)
df_date_m61r$group_by(~format(Date, "%Y"))
df_date_m61r$summarise(mean_val = ~mean(Value))
df_date_m61r

io_csv CSV Input and Output Utilities

Description

High-performance wrappers for reading and writing CSV files. These functions utilize Base R
read.table and write.table engines while ensuring the resulting data frames are optimized for
m61r pipelines.

Usage

read_csv(file, header = TRUE, sep = ",", stringsAsFactors = FALSE, ...)

Within an m61r pipeline
p$write_csv(file, sep = ",", row.names = FALSE, quote = FALSE, ...)

Arguments

file A character string specifying the file path.
header Logical; does the file contain a header row?
sep The field separator character.
stringsAsFactors

Logical; should character vectors be converted to factors?
row.names Logical; should row names be written to the file?
quote Logical; should character strings be quoted?
... Additional arguments passed to the underlying read.table or write.table

functions.

join 11

Details

read_csv is an optimized loader that automatically strips row names after reading, ensuring a clean
index for subsequent m61r operations.

write_csv is designed to be used as a terminal step in an m61r pipeline. It accesses the internal
result_ buffer of the object and exports it to the specified file path.

Value

read_csv returns a data.frame. write_csv returns invisible() and is used for its side effect of
file creation.

Examples

df <- read_csv("data.csv")
p <- m61r(df)

p <- m61r(mtcars)
p$filter(~mpg > 20)
p$mutate(hp_per_cyl = ~hp / cyl)

Export results
p$write_csv("filtered_mtcars.csv")

join Join two data.frames

Description

Join two data.frames.

Usage

left_join_(df, df2, by = NULL, by.x = NULL, by.y = NULL)
anti_join_(df, df2, by = NULL, by.x = NULL, by.y = NULL)
full_join_(df, df2, by = NULL, by.x = NULL, by.y = NULL)
inner_join_(df, df2, by = NULL, by.x = NULL, by.y = NULL)
right_join_(df, df2, by = NULL, by.x = NULL, by.y = NULL)
semi_join_(df, df2, by = NULL, by.x = NULL, by.y = NULL)

Arguments

df data.frame
df2 data.frame
by column names of the pivot of both data.frame 1 and data.frame 2 if they are

identical. Otherwise, better to use by.x and by.y
by.x column names of the pivot of data.frame 1
by.y column names of the pivot of data.frame 2

12 join

Value

The functions return a data frame. The output has the following properties:

• For functions left_join(), inner_join(), full_join(), and right_join(), output in-
cludes all df1 columns and all df2 columns. For columns with identical names in df1 and
df2, a suffix ’.x’ and ’.y’ is added. For left_join(), all df1 rows with matching rows of df2
For inner_join(), a subset of df1 rows matching rows of df2. For full_join(), all df1
rows, with all df2 rows. For right_join(), all df2 rows with matching rows of df1.

• For functions semi_join() and anti_join(), output include columns of df1 only. For
semi_join(), all df1 rows with a match in df2. For anti_join(), a subset of df1 rows
not matching rows of df2.

Examples

books <- data.frame(
name = I(c("Tukey", "Venables", "Tierney","Ripley",

"Ripley", "McNeil", "R Core")),
title = c("Exploratory Data Analysis",

"Modern Applied Statistics ...",
"LISP-STAT",
"Spatial Statistics", "Stochastic Simulation",
"Interactive Data Analysis",
"An Introduction to R"),

other.author = c(NA, "Ripley", NA, NA, NA, NA,"Venables & Smith"))

authors <- data.frame(
surname = I(c("Tukey", "Venables", "Tierney", "Ripley", "McNeil","Asimov")),

nationality = c("US", "Australia", "US", "UK", "Australia","US"),
deceased = c("yes", rep("no", 4),"yes"))

tmp <- left_join_(books,authors, by.x = "name", by.y = "surname")
head(tmp)

tmp <- inner_join_(books,authors, by.x = "name", by.y = "surname")
head(tmp)

tmp <- full_join_(books,authors, by.x = "name", by.y = "surname")
head(tmp)

tmp <- right_join_(books,authors, by.x = "name", by.y = "surname")
head(tmp)

tmp <- semi_join_(books,authors, by.x = "name", by.y = "surname")
head(tmp)

tmp <- anti_join_(books,authors, by.x = "name", by.y = "surname")
head(tmp)

with m61r class

join_asof 13

inner join
tmp <- m61r(df=authors)

tmp$inner_join(books, by.x = "surname", by.y = "name")
tmp

left join
tmp$left_join(books, by.x = "surname", by.y = "name")
tmp

right join
tmp$right_join(books, by.x = "surname", by.y = "name")
tmp

full join
tmp$full_join(books, by.x = "surname", by.y = "name")
tmp

semi join
tmp$semi_join(books, by.x = "surname", by.y = "name")
tmp

anti join #1
tmp$anti_join(books, by.x = "surname", by.y = "name")
tmp

anti join #2
tmp2 <- m61r(df=books)
tmp2$anti_join(authors, by.x = "name", by.y = "surname")
tmp2

with two m61r objects
tmp1 <- m61r(books)
tmp2 <- m61r(authors)
tmp3 <- anti_join(tmp1,tmp2, by.x = "name", by.y = "surname")
tmp3

join_asof Join Two Data Frames Based on Nearest Key

Description

Performs an "As-Of" join, matching rows from two data frames where the keys are close but not
necessarily equal. This is the primary tool for time-series synchronization, mimicking ‘Polars‘
join_asof.

Usage

Primitive function

14 join_asof

join_asof_(x, y, by_x, by_y, direction = "backward")

Within an m61r pipeline
p$join_asof(y, by_x, by_y, direction = "backward")

Arguments

x, result_ The left data frame (primary timeline).

y The right data frame (reference timeline). Must be sorted by the join key.

by_x The column name in the left data frame used for joining.

by_y The column name in the right data frame used for joining.

direction Direction of the search: "backward" (default) finds the nearest value ≤ key;
"forward" finds the nearest value ≥ key.

Details

The "As-Of" join is fundamentally different from a standard join. It does not look for exact matches
but finds the closest record in a reference table.

• Backward: Matches the observation in y that is most recent relative to the time in x (where
y_time <= x_time).

• Forward: Matches the next upcoming observation in y (where y_time >= x_time).

For maximum speed, m61r utilizes the findInterval function, which performs a binary search in
C, ensuring that even with millions of rows, the join remains nearly instantaneous.

Value

A data frame (or updates the m61r object) containing all columns from x and the matched columns
from y.

Examples

quotes <- data.frame(
time = as.POSIXct("2025-01-01 10:00") + c(0, 10, 20),
price = c(100.1, 100.5, 100.3)

)

trades <- data.frame(
time = as.POSIXct("2025-01-01 10:00:05"),
volume = 50

)

This matches the trade at 10:00:05 with the price at 10:00:00 (100.1)
p <- m61r(trades)
p$join_asof(quotes, by_x = "time", by_y = "time", direction = "backward")

print(p)

m61r 15

m61r Create m61r object

Description

Create a m61r object that enables to run a sequence of operations on a data.frame.

Usage

m61r(df = NULL)

S3 method for class 'm61r'
x[i, j, ...]

S3 replacement method for class 'm61r'
x[i, j] <- value

S3 method for class 'm61r'
print(x, ...)

S3 method for class 'm61r'
names(x, ...)

S3 method for class 'm61r'
dim(x, ...)

S3 method for class 'm61r'
as.data.frame(x, ...)

S3 method for class 'm61r'
rbind(x, ...)

S3 method for class 'm61r'
cbind(x, ...)

Arguments

df data.frame

x object of class m61r

i row

j column

... further arguments passed to or from other methods

value value to be assigned

16 m61r

Value

The function m61r returns an object of type m61r.

Argument df get stored internally to the object m61r. One manipulates the internal data.frame
by using internal functions similar to the ones implemented in package m61r for data.frames as
arrange, desange, filter, join and its relatives, mutate and transmutate, gather and spread,
select, group_by, summarise, values and modify. The result of the last action is stored internally
to the object m61r until the internal function values get called. It is thus possible to create a readable
sequence of actions on a data.frame.

In addition,

• [.m61r returns a subset of the internal data.frame embedded to the object m61r.

• [<-.m61r assigns value to the internal data.frame embedded to the object m61r.

• print.m61r prints the internal data.frame embedded to the object m61r.

• names.m61r provides the names of the column of the internal data.frame embedded to the
object m61r.

• dim.m61r provides the dimensions of the internal data.frame embedded to the object m61r.

• as.data.frame.m61r extracts the internal data.frame embedded to the object m61r.

• cbind.m61r combines by columns two objects m61r.

• rbind.m61r combines by rows two objects m61r.

• left_join, anti_join, full_join, inner_join, right_join, semi_join join two objects
m61r.

The m61r object maintains an internal state. For advanced transformations, users can use .SD()
within formulas. .SD() (Subset of Data) refers to the current data.frame being processed. If a
group_by operation is active, .SD() refers to the current group only.

Finally, it is possible to clone a m61r object into a new one by using the internal function clone.

Examples

init
co2 <- m61r(df=CO2)

filter
co2$filter(~Plant=="Qn1")
co2

co2$filter(~Type=="Quebec")
co2

select
co2$select(~Type)
co2

co2$select(~c(Plant,Type))
co2

co2$select(~-Type)

m61r 17

co2

co2$select(variable=~-(Plant:Treatment))
co2

mutate/transmutate
co2$mutate(z=~conc/uptake)
co2

#co2$mutate(mean=~mean(uptake))
#co2
#Warning message:
#In FUN(X[[i]], ...) : Expression mean has incompatible length.

co2$mutate(z1=~uptake/conc,y=~conc/100)
co2

co2$transmutate(z2=~uptake/conc,y2=~conc/100)
co2

summarise
co2$summarise(mean=~mean(uptake),sd=~sd(uptake))
co2

co2 = m61r(CO2)
co2$group_by(~cbind(Type,Treatment))
co2$summarise(mean=~mean(uptake),sd=~sd(uptake))
co2

arrange/dessange
co2$arrange(~c(conc))
co2

co2$arrange(~c(Treatment,conc,uptake))
co2

co2$desange(~c(Treatment,conc,uptake))
co2

Reshape

gather
df3 <- data.frame(id = 1:4,

age = c(40,50,60,50),
dose.a1 = c(1,2,1,2),
dose.a2 = c(2,1,2,1),
dose.a14 = c(3,3,3,3))

df4 <- m61r::m61r(df3)
df4$gather(pivot = c("id","age"))
df4

18 m61r

spread
df3 <- data.frame(id = 1:4,

age = c(40,50,60,50),
dose.a1 = c(1,2,1,2),
dose.a2 = c(2,1,2,1),
dose.a14 = c(3,3,3,3))

df4 <- m61r::gather_(df3,pivot = c("id","age"))
df4 <- rbind(df4,
data.frame(id=5, age=20,parameters="dose.a14",values=8),
data.frame(id=6, age=10,parameters="dose.a1",values=5))

tmp <- m61r::m61r(df4)
tmp$spread(col_name="parameters",col_values="values",pivot=c("id","age"))
tmp

equivalence
co2 # is not equivalent to co2[]
co2[] # is equivalent to co2$values()
co2[1,] # is equivalent to co2$values(1,)
co2[,2:3] # is equivalent to co2$values(,2:3)
co2[1:10,1:3] # is equivalent to co2$values(1:10,2:3)
co2[1,"Plant"]# is equivalent to co2$values(1,"Plant")

modification on m61r object only stay for one step
co2[1,"conc"] <- 100
co2[1,] # temporary result
co2[1,] # back to normal

WARNING:Keep the brackets to manipulate the intern data.frame
... OR you will destroy co2, and only keep the data.frame
co2 <- co2[-1,]
class(co2) # data.frame

descriptive manipulation
names(co2)
dim(co2)
str(co2)

cloning
The following will only create a second variable that point on
the same object (!= cloning)
foo <- co2
str(co2)
str(foo)

Instead, cloning into a new environemnt
foo <- co2$clone()
str(co2)
str(foo)

mutate 19

mutate Transformative selections of a data.frame

Description

Transformative selections of a data.frame.

Usage

mutate_(df, ...)
transmutate_(df, ...)

Arguments

df data.frame

... formula used for transformative selections the data.frame

Details

mutate_ and transmutate_ execute expressions non-grouped. If the m61r object is in a grouped
state (via $group_by()), that grouping state is ignored by the primitive functions, ensuring Base R
speed for vectorised operations.

Value

The functions return a data frame. The output has the following properties:

• For function mutate_(), output includes all df columns. In addition, new columns are created
according to argument ... and placed after the others.

• For function transmutate_(), output includes only columns created according to argument
... and placed after the others.

Examples

tmp <- mutate_(CO2,z=~conc/uptake)
head(tmp)

Return an warning: expression mean(uptake) get a result with 'nrow' different from 'df'
tmp <- mutate_(CO2,mean=~mean(uptake))

tmp <- mutate_(CO2,z1=~uptake/conc,y=~conc/100)
head(tmp)

tmp <- transmutate_(CO2,z2=~uptake/conc,y2=~conc/100)
head(tmp)

with m61r class
co2 <- m61r(df=CO2)

20 reshape

co2$mutate(z=~conc/uptake)
co2

not allowed
#co2$mutate(mean=~mean(uptake))
#co2
#Warning message:
#In FUN(X[[i]], ...) : Expression mean has incompatible length.

co2$mutate(z1=~uptake/conc,y=~conc/100)
co2

co2$transmutate(z2=~uptake/conc,y2=~conc/100)
co2

reshape Reshape a data.frame

Description

Reshape a data.frame.

Usage

gather_(df, new_col_name = "parameters", new_col_values = "values", pivot)
spread_(df, col_name, col_values, pivot)

Arguments

df data.frame

new_col_name name of the new column ’parameters’

new_col_values name of the new columns ’values’

col_name name of the column ’parameters’

col_values name of the new columns ’values’

pivot name of the columns used as pivot

Details

A data frame is said ‘wide‘ if several of its columns describe connected information of the same
record. A data frame is said ‘long‘ if two of its columns provide information about records, with
one describing their name and the second their value. Functions gather_() and spread_() enable
to reshape a data frames from a ‘wide‘ format to a ‘long‘ format, and vice-versa.

reshape 21

Value

The functions return a data frame.

• Output from function gather_() get ’pivot’ columns determined by argument pivot, and
‘long‘ columns named according to arguments new_col_name and new_col_values.

• Output from function spread_() get ’pivot’ columns determined by argument pivot, and
‘wide‘ columns named according to values in column determined by argument col_name. For
‘wide‘ columns, each row corresponds to values present in column determined by argument
col_values.

Examples

df3 <- data.frame(id = 1:4,
age = c(40,50,60,50),
dose.a1 = c(1,2,1,2),
dose.a2 = c(2,1,2,1),
dose.a14 = c(3,3,3,3))

gather_(df3,pivot = c("id","age"))

df4 <- gather_(df3,pivot = c("id","age"))
df5 <- rbind(df4,

data.frame(id=5, age=20,parameters="dose.a14",values=8),
data.frame(id=6, age=10,parameters="dose.a1",values=5))

spread_(df5,col_name="parameters",col_values="values",pivot=c("id","age"))

with m61r class
co2 <- m61r(df=CO2)

gather
df3 <- data.frame(id = 1:4,

age = c(40,50,60,50),
dose.a1 = c(1,2,1,2),
dose.a2 = c(2,1,2,1),
dose.a14 = c(3,3,3,3))

df4 <- m61r(df3)
df4$gather(pivot = c("id","age"))
df4

spread
df3 <- data.frame(id = 1:4,

age = c(40,50,60,50),
dose.a1 = c(1,2,1,2),
dose.a2 = c(2,1,2,1),
dose.a14 = c(3,3,3,3))

df4 <- gather_(df3,pivot = c("id","age"))
df4 <- rbind(df4,
data.frame(id=5, age=20,parameters="dose.a14",values=8),
data.frame(id=6, age=10,parameters="dose.a1",values=5))

22 select

tmp <- m61r(df4)
tmp$spread(col_name="parameters",col_values="values",pivot=c("id","age"))
tmp

select select columns of a data.frame

Description

Select columns of a data.frame.

Usage

select_(df, variable = NULL)

Arguments

df data.frame

variable formula that describes the selection

Value

select_() returns a data frame. Properties:

• Only columns following the condition determined by

• variable appear.

• Rows are not modified.

Examples

tmp <- select_(CO2,~Type)
head(tmp)

tmp <- select_(CO2,~c(Plant,Type))
head(tmp)

tmp <- select_(CO2,~-Type)
head(tmp)

tmp <- select_(CO2,variable=~-(Plant:Treatment))
head(tmp)

with m611r class
co2 <- m61r(df=CO2)

summarise 23

co2$select(~Type)
co2

co2$select(~c(Plant,Type))
co2

co2$select(~-Type)
co2

co2$select(variable=~-(Plant:Treatment))
co2

summarise Summarise Formula on Groups

Description

Summarise of formulas on a data.frame.

Usage

summarise_(df, group_info = NULL, ...)

Arguments

df data.frame

group_info formula that describes the group

... formulas to be generated

Details

summarise_ is the aggregation function. It expects the grouping information from get_group_indices_.
When a formula expression (e.g., ~mean(uptake)) is run, it is executed for each group subset, re-
lying on Base R lapply over the pre-calculated group indices for performance. All expressions
within summarise_ must return an atomic vector of length 1 for each group.

Value

summarise_() returns a data frame. If argument group_info is not NULL, output get its first
columns called according to the names present in argument group_info. The following columns
are called according to the name of each argument present in Each row corresponds to pro-
cessed expressions determined in ... for each group determined in group_info, or over the whole
data frame if group_info is NULL.

24 value

Examples

summarise_(CO2,a=~mean(uptake),b=~sd(uptake))

g_info <- get_group_indices_(CO2, ~c(Type, Treatment))
tmp <- summarise_(CO2, group_info=g_info,mean=~mean(uptake),sd=~sd(uptake))
tmp

with m61r class
co2 <- m61r(df=CO2)

summarise
co2$summarise(mean=~mean(uptake),sd=~sd(uptake))
co2

co2 = m61r(CO2)
co2$group_by(~cbind(Type,Treatment))
co2$summarise(mean=~mean(uptake),sd=~sd(uptake))
co2

value get or assign a value to a data.frame

Description

Get or assign a value to a data.frame

Usage

value_(df, i, j)
'modify_<-'(df,i,j,value)

Arguments

df data.frame

i row

j column

value value to be assigned

Value

The functions value_ and 'modify_<-' return a data frame. Properties:

• Only rows determined by

• i appear. If

• i is missing, no row is filtered.

• Only columns determined by

value 25

• j appear. If

• j is missing, no column is filtered.

Besides,

• For function value_: If argument i is non-missing and argument j is missing, the function
returns an object of the same type as df. If both arguments i and j are missing, the function
returns an object of the same type as df.

• For function 'modify_<-': The function returns an object of the same type as df.

Examples

tmp <- value_(CO2,1,2)
attributes(tmp) # data frame

tmp <- value_(CO2,1:2,2)
attributes(tmp) # data frame

tmp <- value_(CO2,1:2,2:4)
attributes(tmp) # data frame

tmp <- value_(CO2,,2)
attributes(tmp) # data frame

tmp <- value_(CO2,2)
attributes(tmp) # same as CO2

tmp <- value_(CO2)
attributes(tmp) # same as CO2

df3 <- data.frame(id = 1:4,
age = c(40,50,60,50),
dose.a1 = c(1,2,1,2),
dose.a2 = c(2,1,2,1),
dose.a14 = c(3,3,3,3))

'modify_<-'(df3,1,2,6)

'modify_<-'(df3,1:3,2:4,data.frame(c(20,10,90),c(9,3,4),c(0,0,0)))

Index

∗ Base R
m61r-package, 2

∗ IO
io_csv, 10

∗ data manipulation
m61r-package, 2

∗ evaluation
expression, 7

∗ grouping
get_group_indices_, 9

∗ logic
case_when, 4

∗ m61r
across, 3
arrange, 4
case_when, 4
cut_time, 5
explode, 6
expression, 7
filter, 8
get_group_indices_, 9
io_csv, 10
join, 11
join_asof, 13
m61r, 15
mutate, 19
reshape, 20
select, 22
summarise, 23
value, 24

∗ manipulation
explode, 6

∗ package
m61r-package, 2

∗ temporal
cut_time, 5
join_asof, 13

∗ transformation
across, 3

[.m61r (m61r), 15
[<-.m61r (m61r), 15

across, 3
anti_join (m61r), 15
anti_join_ (join), 11
arrange, 4
arrange_ (arrange), 4
as.data.frame.m61r (m61r), 15

case_when, 4
cbind.m61r (m61r), 15
cut_time, 5

desange_ (arrange), 4
dim.m61r (m61r), 15

eval, 7
explode, 6
expression, 7
expression_ (expression), 7

filter, 8
filter_ (filter), 8
full_join (m61r), 15
full_join_ (join), 11

gather_ (reshape), 20
get_group_indices_, 9

inner_join (m61r), 15
inner_join_ (join), 11
interaction, 9
io_csv, 10

join, 11
join_asof, 13
join_asof_ (join_asof), 13

lapply, 23
left_join (m61r), 15

26

INDEX 27

left_join_ (join), 11

m61r, 15
m61r-package, 2
modify_<- (value), 24
mutate, 19
mutate_ (mutate), 19

names.m61r (m61r), 15

print.m61r (m61r), 15

rbind.m61r (m61r), 15
read_csv (io_csv), 10
reshape, 20
right_join (m61r), 15
right_join_ (join), 11

select, 22
select_ (select), 22
semi_join (m61r), 15
semi_join_ (join), 11
spread_ (reshape), 20
summarise, 23
summarise_ (summarise), 23

transmutate_ (mutate), 19

value, 24
value_ (value), 24

with, 7
write_csv (io_csv), 10

	m61r-package
	across
	arrange
	case_when
	cut_time
	explode
	expression
	filter
	get_group_indices_
	io_csv
	join
	join_asof
	m61r
	mutate
	reshape
	select
	summarise
	value
	Index

