## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, warning=FALSE, message=FALSE-------------------------------------- ## Simulating some data set.seed(1) p = 6 n = 100 X = matrix(rnorm(n*p), ncol = p) X[,1] = X[,2] + X[,3] + rnorm(n, 0, 0.01) y = rnorm(n) summary(lm(y ~ X)) ## ----------------------------------------------------------------------------- library(mcvis) mcvis_result = mcvis(X = X) mcvis_result ## ----------------------------------------------------------------------------- plot(mcvis_result) ## ----------------------------------------------------------------------------- plot(mcvis_result, type = "igraph") ## ----------------------------------------------------------------------------- ## Simulation taken from the `mplot` package. ## Generating a data with multi-collinearity. n=50 set.seed(8) # a seed of 2 also works x1 = rnorm(n,0.22,2) x7 = 0.5*x1 + rnorm(n,0,sd=2) x6 = -0.75*x1 + rnorm(n,0,3) x3 = -0.5-0.5*x6 + rnorm(n,0,2) x9 = rnorm(n,0.6,3.5) x4 = 0.5*x9 + rnorm(n,0,sd=3) x2 = -0.5 + 0.5*x9 + rnorm(n,0,sd=2) x5 = -0.5*x2+0.5*x3+0.5*x6-0.5*x9+rnorm(n,0,1.5) x8 = x1 + x2 -2*x3 - 0.3*x4 + x5 - 1.6*x6 - 1*x7 + x9 +rnorm(n,0,0.5) y = 0.6*x8 + rnorm(n,0,2) artificialeg = round(data.frame(x1,x2,x3,x4,x5,x6,x7,x8,x9,y),1) ## ----------------------------------------------------------------------------- X = artificialeg[,1:9] round(cor(X), 2) mcvis_result = mcvis(X) mcvis_result plot(mcvis_result) ## ----------------------------------------------------------------------------- class(mcvis_result) ## ---- eval = FALSE------------------------------------------------------------ # shiny_mcvis(mcvis_result) ## ----------------------------------------------------------------------------- sessionInfo()