## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(mde) ## ----------------------------------------------------------------------------- dummy_test <- data.frame(ID = c("A","B","B","A"), values = c("n/a",NA,"Yes","No")) # Convert n/a and no to NA head(recode_as_na(dummy_test, value = c("n/a","No"))) ## ----------------------------------------------------------------------------- another_dummy <- data.frame(ID = 1:5, Subject = 7:11, Change = c("missing","n/a",2:4 )) # Only change values at the column Change head(recode_as_na(another_dummy, subset_cols = "Change", value = c("n/a","missing"))) ## ----------------------------------------------------------------------------- # only change at columns that start with Solar head(recode_as_na(airquality,value=190,pattern_type="starts_with",pattern="Solar")) ## ----------------------------------------------------------------------------- # recode at columns that start with O or S(case sensitive) head(recode_as_na(airquality,value=c(67,118),pattern_type="starts_with",pattern="S|O")) ## ----------------------------------------------------------------------------- # use my own RegEx head(recode_as_na(airquality,value=c(67,118),pattern_type="regex",pattern="(?i)^(s|o)")) ## ----------------------------------------------------------------------------- head(recode_as_na_if(airquality,sign="gt", percent_na=20)) ## ----------------------------------------------------------------------------- partial_match <- data.frame(A=c("Hi","match_me","nope"), B=c(NA, "not_me","nah")) recode_as_na_str(partial_match,"ends_with","ME", case_sensitive=FALSE) ## ----------------------------------------------------------------------------- head(recode_as_na_for(airquality,criteria="gt",value=25)) ## ----------------------------------------------------------------------------- head(recode_as_na_for(airquality, value=40,subset_cols=c("Solar.R","Ozone"), criteria="gt")) ## ----------------------------------------------------------------------------- head(recode_na_as(airquality)) # use NaN head(recode_na_as(airquality, value=NaN)) ## ----------------------------------------------------------------------------- head(recode_na_as(airquality, value=0, subset_cols="Ozone")) ## ----------------------------------------------------------------------------- head(mde::recode_na_as(airquality, value=0, pattern_type="starts_with",pattern="Solar")) ## ----------------------------------------------------------------------------- head(column_based_recode(airquality, values_from = "Wind", values_to="Wind", pattern_type = "regex", pattern = "Solar|Ozone")) ## ----------------------------------------------------------------------------- head(custom_na_recode(airquality)) ## ----------------------------------------------------------------------------- head(custom_na_recode(airquality,func="mean",across_columns=c("Solar.R","Ozone"))) ## ----------------------------------------------------------------------------- # use lag for a backfill head(custom_na_recode(airquality,func=dplyr::lead )) ## ----------------------------------------------------------------------------- some_data <- data.frame(ID=c("A1","A1","A1","A2","A2", "A2"),A=c(5,NA,0,8,3,4),B=c(10,0,0,NA,5,6),C=c(1,NA,NA,25,7,8)) head(custom_na_recode(some_data,func = "mean", grouping_cols = "ID")) ## ----------------------------------------------------------------------------- head(custom_na_recode(some_data,func = "mean", grouping_cols = "ID", across_columns = c("C", "A"))) ## ----------------------------------------------------------------------------- some_data <- data.frame(ID=c("A1","A2","A3", "A4"), A=c(5,NA,0,8), B=c(10,0,0,1), C=c(1,NA,NA,25)) head(recode_na_if(some_data,grouping_col="ID", target_groups=c("A2","A3"), replacement= 0)) ## ----------------------------------------------------------------------------- head(drop_na_if(airquality, sign="gteq",percent_na = 24)) ## ----------------------------------------------------------------------------- head(drop_na_if(airquality, percent_na = 24, keep_columns = "Ozone")) ## ----------------------------------------------------------------------------- head(drop_na_if(airquality, percent_na = 24)) ## ----------------------------------------------------------------------------- grouped_drop <- structure(list(ID = c("A", "A", "B", "A", "B"), Vals = c(4, NA, NA, NA, NA), Values = c(5, 6, 7, 8, NA)), row.names = c(NA, -5L), class = "data.frame") # Drop all columns for groups that meet a percent missingness of greater than or # equal to 67 drop_na_if(grouped_drop,percent_na = 67,sign="gteq", grouping_cols = "ID") ## ----------------------------------------------------------------------------- # Drop rows with at least two NAs head(drop_row_if(airquality, sign="gteq", type="count" , value = 2)) ## ----------------------------------------------------------------------------- # Drops 42 rows head(drop_row_if(airquality, type="percent", value=16, sign="gteq", as_percent=TRUE)) ## ----------------------------------------------------------------------------- head(drop_na_at(airquality,pattern_type = "starts_with","O")) ## ----------------------------------------------------------------------------- test2 <- data.frame(ID= c("A","A","B","A","B"), Vals = c(4,rep(NA, 4))) drop_all_na(test2, grouping_cols="ID") ## ----------------------------------------------------------------------------- test2 <- data.frame(ID= c("A","A","B","A","B"), Vals = rep(NA, 5)) head(drop_all_na(test2, grouping_cols = "ID")) ## ----------------------------------------------------------------------------- head(dict_recode(airquality, use_func="recode_na_as", patterns = c("solar", "ozone"), pattern_type="starts_with", values = c(520,42))) ## ----------------------------------------------------------------------------- head(recode_as_value(airquality, value=c(67,118),replacement=NA, pattern_type="starts_with",pattern="S|O"))