Title: | Framework to Build Mechanistic and Metabolic Constrained Species Distribution Models |
Version: | 1.1.4 |
Description: | Build spatially and temporally explicit process-based species distribution models, that can include an arbitrary number of environmental factors, species and processes including metabolic constraints and species interactions. The focus of the package is simulating populations of one or multiple species in a grid-based landscape and studying the meta-population dynamics and emergent patterns that arise from the interaction of species under complex environmental conditions. It provides functions for common ecological processes such as negative exponential, kernel-based dispersal (see Nathan et al. (2012) <doi:10.1093/acprof:oso/9780199608898.003.0015>), calculation of the environmental suitability based on cardinal values ( Yin et al. (1995) <doi:10.1016/0168-1923(95)02236-Q>, simplified by Yan and Hunt (1999) <doi:10.1006/anbo.1999.0955> see eq: 4), reproduction in form of an Ricker model (see Ricker (1954) <doi:10.1139/f54-039> and Cabral and Schurr (2010) <doi:10.1111/j.1466-8238.2009.00492.x>), as well as metabolic scaling based on the metabolic theory of ecology (see Brown et al. (2004) <doi:10.1890/03-9000> and Brown, Sibly and Kodric-Brown (2012) <doi:10.1002/9781119968535.ch>). |
License: | GPL-3 |
Copyright: | see inst/COPYRIGHTS |
URL: | https://metaRange.github.io/metaRange/ |
BugReports: | https://github.com/metaRange/metaRange/issues |
Depends: | R (≥ 3.5.0) |
Imports: | Rcpp (≥ 1.0.10), terra, R6, checkmate, grDevices, graphics, utils |
Suggests: | knitr, rmarkdown, tinytest |
VignetteBuilder: | knitr |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.3 |
LinkingTo: | Rcpp, RcppArmadillo |
NeedsCompilation: | yes |
Packaged: | 2024-02-09 11:51:34 UTC; srfall |
Author: | Stefan Fallert |
Maintainer: | Stefan Fallert <srfallert@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2024-02-09 12:20:04 UTC |
metaRange: Framework to Build Mechanistic and Metabolic Constrained Species Distribution Models
Description
Build spatially and temporally explicit process-based species distribution models, that can include an arbitrary number of environmental factors, species and processes including metabolic constraints and species interactions. The focus of the package is simulating populations of one or multiple species in a grid-based landscape and studying the meta-population dynamics and emergent patterns that arise from the interaction of species under complex environmental conditions. It provides functions for common ecological processes such as negative exponential, kernel-based dispersal (see Nathan et al. (2012) doi:10.1093/acprof:oso/9780199608898.003.0015), calculation of the environmental suitability based on cardinal values ( Yin et al. (1995) doi:10.1016/0168-1923(95)02236-Q, simplified by Yan and Hunt (1999) doi:10.1006/anbo.1999.0955 see eq: 4), reproduction in form of an Ricker model (see Ricker (1954) doi:10.1139/f54-039 and Cabral and Schurr (2010) doi:10.1111/j.1466-8238.2009.00492.x), as well as metabolic scaling based on the metabolic theory of ecology (see Brown et al. (2004) doi:10.1890/03-9000 and Brown, Sibly and Kodric-Brown (2012) doi:10.1002/9781119968535.ch).
Author(s)
Maintainer: Stefan Fallert srfallert@gmail.com (ORCID) [copyright holder]
Authors:
Lea Li (Implemented the first version of the metabolic scaling) [copyright holder]
Juliano Sarmento Cabral j.sarmentocabral@bham.ac.uk (ORCID) [copyright holder, thesis advisor]
Other contributors:
Tyler Morgan-Wall (ORCID) [contributor, copyright holder]
Bavarian Ministry of Science and Arts (bayklif) [funder]
Deutsche Bundesstiftung Umwelt (DBU) [funder]
References
Fallert, S., Li, L., & Sarmento Cabral, J. (2023). metaRange: Framework to Build Mechanistic and Metabolic Constrained Species Distribution Models. Zenodo. doi:10.5281/zenodo.10364778
See Also
Useful links:
Calculate 2D dispersal kernel.
Description
Use a user defined function to create a 2D dispersal kernel.
Usage
calculate_dispersal_kernel(max_dispersal_dist, kfun, normalize = TRUE, ...)
Arguments
max_dispersal_dist |
|
kfun |
|
normalize |
|
... |
additional parameters to be passed to the kernel function. |
Value
Dispersal kernel with probabilities.
Examples
# a very simple uniform kernel
uniform_kernel <- calculate_dispersal_kernel(
max_dispersal_dist = 3,
kfun = function(x) {
x * 0 + 1
}
)
# same as
stopifnot(
uniform_kernel == matrix(1 / 49, nrow = 7, ncol = 7)
)
# now a negative exponential kernel
# not that `mean_dispersal_dist`
# is passed to the kernel function.
calculate_dispersal_kernel(
max_dispersal_dist = 3,
kfun = negative_exponential_function,
mean_dispersal_dist = 1
)
Normalization constant calculation
Description
Calculates the normalization constant for the metabolic scaling based on a known or estimated parameter value under at a reference temperature.
Usage
calculate_normalization_constant(
parameter_value,
scaling_exponent,
mass,
reference_temperature,
E = NULL,
k = 8.617333e-05,
warn_if_possibly_false_input = getOption("metaRange.verbose", default = FALSE) > 0
)
Arguments
parameter_value |
|
scaling_exponent |
|
mass |
|
reference_temperature |
|
E |
|
k |
|
warn_if_possibly_false_input |
|
Details
Note the different scaling values for different parameter. The following is a summary from table 4 in Brown, Sibly and Kodric-Brown (2012) (see references).
Parameter | Scaling exponent | Activation energy |
resource usage | 3/4 | -0.65 |
reproduction, mortality | -1/4 | -0.65 |
carrying capacity | -3/4 | 0.65 |
Value
The calculated normalization constant.
References
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. and West, G.B. (2004) Toward a Metabolic Theory of Ecology. Ecology, 85 1771–1789. doi:10.1890/03-9000
Brown, J.H., Sibly, R.M. and Kodric-Brown, A. (2012) Introduction: Metabolism as the Basis for a Theoretical Unification of Ecology. In Metabolic Ecology (eds R.M. Sibly, J.H. Brown and A. Kodric-Brown) doi:10.1002/9781119968535.ch
See Also
metabolic_scaling()
Examples
calculate_normalization_constant(
parameter_value = 1,
scaling_exponent = -1 / 4,
mass = 1,
reference_temperature = 273.15,
E = -0.65
)
Calculate (estimate) environmental suitability
Description
Calculate / estimate the environmental suitability for a given environmental value, based on a beta distribution, using the three "cardinal" values of the species for that environmental niche.
Usage
calculate_suitability(vmax, vopt, vmin, venv)
Arguments
vmax |
|
vopt |
|
vmin |
|
venv |
|
Details
The environmental suitability is calculated based on a beta distribution after a formula provided by Yin et al. (1995) and simplified by Yan and Hunt (1999) (see references paragraph)
suitability = (\frac{V_{max} - V_{env}}{V_{max} - V_{opt}}) * (\frac{V_{env} - V_{min}}{V_{opt} - V_{min}})^{\frac{V_{opt} - V_{min}}{V_{max} - V_{opt}}}
Value
<numeric>
environmental suitability
Note
The original formula by Yin et al. was only intended to calculate the relative daily growth rate of plants in relation to temperature. The abstraction to use this to A) calculate a niche suitability; and B) use it on other environmental values than temperature might not be valid. However, the assumption that the environmental suitability for one niche dimension is highest at one optimal value and decreases towards the tolerable minimum and maximum values in a nonlinear fashion seems reasonable.
References
Yin, X., Kropff, M.J., McLaren, G., Visperas, R.M., (1995) A nonlinear model for crop development as a function of temperature, Agricultural and Forest Meteorology, Volume 77, Issues 1–2, Pages 1–16, doi:10.1016/0168-1923(95)02236-Q
Also, see equation 4 in: Weikai Yan, L.A. Hunt, (1999) An Equation for Modelling the Temperature Response of Plants using only the Cardinal Temperatures, Annals of Botany, Volume 84, Issue 5, Pages 607–614, ISSN 0305-7364, doi:10.1006/anbo.1999.0955
Examples
calculate_suitability(
vmax = 30,
vopt = 25,
vmin = 10,
venv = 1:40
)
calculate_suitability(
vmax = seq(30, 32, length.out = 40),
vopt = seq(20, 23, length.out = 40),
vmin = seq(9, 11, length.out = 40),
venv = 1:40
)
try(calculate_suitability(
vmax = 1,
vopt = seq(20, 23, length.out = 40),
vmin = seq(9, 11, length.out = 40),
venv = 1:40
))
Create a simulation
Description
Creates a metaRangeSimulation object.
A convenience wrapper for metaRangeSimulation$new()
.
Usage
create_simulation(source_environment, ID = NULL, seed = NULL)
Arguments
source_environment |
|
ID |
|
seed |
|
Value
A metaRangeSimulation object
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
names(sim_env) <- "env_01"
test_sim <- create_simulation(sim_env)
Dispersal process
Description
Disperse a (abundance) matrix using a dispersal kernel and optional weights.
Usage
dispersal(dispersal_kernel, abundance, weights)
Arguments
dispersal_kernel |
|
abundance |
|
weights |
|
Details
The abundance matrix is dispersed using the dispersal kernel. If a matrix of weights is supplied, the individuals will redistribute within the dispersal kernel according to the weights. I.e. individuals will more likely move towards areas with a higher weight, if they are within their dispersal distance. Note:
the abundance is modified in place, to optimize performance.
Any
NA
orNaN
in abundance or weights will be (in-place) replaced by0
.
Value
<numeric matrix>
Dispersed abundance matrix.
Examples
n <- 10
n2 <- n^2
abu <- matrix(1:n2, nrow = n, ncol = n)
suitab <- matrix(1, nrow = n, ncol = n)
kernel <- calculate_dispersal_kernel(
max_dispersal_dist = 4,
kfun = negative_exponential_function,
mean_dispersal_dist = 1.2
)
res1 <- dispersal(
dispersal_kernel = kernel,
abundance = abu
)
res2 <- dispersal(
dispersal_kernel = kernel,
abundance = abu,
weights = suitab
)
stopifnot(sum(res1) - sum(res2) < 0.01)
# Note that the abundance is modified in place, i.e:
stopifnot(sum(abu - res2) < 0.01)
Unweighted and fixed sized dispersal
Description
Dispersal function that uses a fixed sized kernel that isn't influenced by external factors. The individuals in each cell are redistributed to the surrounding cells according to probability defined in the dispersal kernel. Useful for e.g. wind dispersed plants.
Usage
dispersal_fixed_unweighted(abundance, dispersal_kernel)
Arguments
abundance |
|
dispersal_kernel |
|
Value
<numeric matrix>
The new abundance matrix.
Weighted and fixed sized dispersal
Description
Dispersal function that uses a fixed sized kernel and weighted dispersal towards areas that have a higher weight. Use case are e.g. animals that can sense their surroundings.
Usage
dispersal_fixed_weighted(abundance, weights, dispersal_kernel)
Arguments
abundance |
|
weights |
|
dispersal_kernel |
|
Value
<numeric matrix>
The new abundance matrix.
metaRangeEnvironment object
Description
Creates an metaRangeEnvironment object in form of an R6 class that stores and handles the environmental values that influence the species in the simulation.
Value
An <metaRangeEnvironment>
object
Public fields
sourceSDS
A SpatRasterDataset created by
terra::sds()
that holds all the environmental values influencing the simulation. Note that the individual data sets should be sensibly named as their names will used throughout the simulation to refer to them.current
an R environment that holds all the environmental values influencing the present time step of the simulation as regular 2D R matrices.
Methods
Public methods
Method new()
Creates a new metaRangeEnvironment object. This is done automatically when a simulation is created. No need to call this as user.
Usage
metaRangeEnvironment$new(sourceSDS = NULL)
Arguments
sourceSDS
<SpatRasterDataset>
created byterra::sds()
that holds all the environmental values influencing the simulation. Note that the individual data sets should be sensibly named as their names will used throughout the simulation to refer to them.
Returns
An <metaRangeEnvironment>
object
Examples
# Note: Only for illustration purposes. env <- metaRangeEnvironment$new(sourceSDS = terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))) env
Method set_current()
Set current (active) time step / environment. No reason to call this as user. The current time step is set automatically.
Usage
metaRangeEnvironment$set_current(layer)
Arguments
layer
<integer>
layer
Returns
<invisible self>
Examples
# Only for illustration purposes. sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2, nlyr = 2)) names(sim_env) <- "env_01" env <- metaRangeEnvironment$new(sourceSDS = sim_env) env$set_current(layer = 1)
Method print()
Prints information about the environment to the console
Usage
metaRangeEnvironment$print()
Returns
<invisible self>
Examples
env <- metaRangeEnvironment$new( sourceSDS = terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2, nlyr = 2)) ) env$print()
Examples
## ------------------------------------------------
## Method `metaRangeEnvironment$new`
## ------------------------------------------------
# Note: Only for illustration purposes.
env <- metaRangeEnvironment$new(sourceSDS = terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2)))
env
## ------------------------------------------------
## Method `metaRangeEnvironment$set_current`
## ------------------------------------------------
# Only for illustration purposes.
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2, nlyr = 2))
names(sim_env) <- "env_01"
env <- metaRangeEnvironment$new(sourceSDS = sim_env)
env$set_current(layer = 1)
## ------------------------------------------------
## Method `metaRangeEnvironment$print`
## ------------------------------------------------
env <- metaRangeEnvironment$new(
sourceSDS = terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2, nlyr = 2))
)
env$print()
Process priority queue
Description
Creates a priority queue in form of an R6 class, that manages the correct process execution order.
Value
<metaRangePriorityQueue>
A metaRangePriorityQueue object.
Methods
Public methods
Method new()
Creates a new metaRangePriorityQueue object. Note: No reason to call this as user. The priority queue is created automatically when a simulation is created.
Usage
metaRangePriorityQueue$new()
Returns
<metaRangePriorityQueue>
A metaRangePriorityQueue object.
Examples
# Only for illustration purposes. pr_queue <- metaRangePriorityQueue$new() pr_queue
Method execute_next_process()
Executes the next process in the queue. No reason to call this as user. The next process is executed automatically.
Usage
metaRangePriorityQueue$execute_next_process(verbose)
Arguments
verbose
<logical>
Print timing and information or not.
Returns
<logical>
TRUE
if the next process has been executed,
FALSE
if not and the queue is empty.
Examples
# Only for illustration purposes. pr_queue <- metaRangePriorityQueue$new() pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env()) pr_queue$enqueue(pr) pr_queue$update() pr_queue$execute_next_process(verbose = TRUE)
Method enqueue()
Add a process to the (future) queue.
Users should only use this method if they added a process to the simulation
via the add_process method of the simulation object with the argument
queue = FALSE
. Otherwise the process is added to the queue automatically.
Usage
metaRangePriorityQueue$enqueue(process)
Arguments
process
<metaRangeProcess>
A metaRangeProcess that should be added to the queue.
Returns
<boolean>
TRUE
on success FALSE
on failure.
Examples
pr_queue <- metaRangePriorityQueue$new() pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env()) pr_queue$enqueue(pr) pr_queue$get_future_queue()
Method dequeue()
Remove a process from the (future) queue. Useful to remove a process from the queue if it is no longer needed. E.g. if a species went extinct.
Usage
metaRangePriorityQueue$dequeue(PID = NULL)
Arguments
PID
<string>
the ID of the process, that should be dequeued.
Returns
<boolean>
TRUE
on success FALSE
on failure.
Examples
pr_queue <- metaRangePriorityQueue$new() pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env()) pr_queue$enqueue(pr) pr_queue$dequeue(pr$get_PID()) pr_queue$get_future_queue()
Method sort_future_queue()
Sort the (future) queue based on the execution priority. This method is called automatically when a process is added to the queue.
Usage
metaRangePriorityQueue$sort_future_queue()
Returns
<invisible self>
.
Examples
pr_queue <- metaRangePriorityQueue$new() pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env()) pr_queue$enqueue(pr) pr_queue$sort_future_queue() # at least no error
Method update()
Update and reset the queue. This method is called automatically at the end of each time step.
Usage
metaRangePriorityQueue$update()
Returns
<invisible self>
.
Examples
pr_queue <- metaRangePriorityQueue$new() pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env()) pr_queue$enqueue(pr) pr_queue$update() pr_queue$get_queue()
Method is_empty()
Check if the queue is empty.
Usage
metaRangePriorityQueue$is_empty()
Returns
<boolean>
TRUE
if queue is empty FALSE
otherwise.
Examples
pr_queue <- metaRangePriorityQueue$new() stopifnot(pr_queue$is_empty())
Method get_queue()
Get the current queue.
Usage
metaRangePriorityQueue$get_queue()
Returns
<named int vector>
The current queue.
Examples
pr_queue <- metaRangePriorityQueue$new() pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env()) pr_queue$enqueue(pr) pr_queue$update() pr_queue$get_queue()
Method get_future_queue()
Get the future queue.
Usage
metaRangePriorityQueue$get_future_queue()
Returns
<named int vector>
The future queue.
Examples
pr_queue <- metaRangePriorityQueue$new() pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env()) pr_queue$enqueue(pr) pr_queue$get_future_queue()
Method get_current_index()
Get the number / index of the next to be executed process.
Usage
metaRangePriorityQueue$get_current_index()
Returns
<integer>
The index.
Examples
pr_queue <- metaRangePriorityQueue$new() pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env()) pr_queue$enqueue(pr) pr_queue$update() pr_queue$get_current_index()
Method print()
Prints information about the queue to the console.
Usage
metaRangePriorityQueue$print()
Returns
<invisible self>
.
Examples
pr_queue <- metaRangePriorityQueue$new() pr_queue$print()
Examples
## ------------------------------------------------
## Method `metaRangePriorityQueue$new`
## ------------------------------------------------
# Only for illustration purposes.
pr_queue <- metaRangePriorityQueue$new()
pr_queue
## ------------------------------------------------
## Method `metaRangePriorityQueue$execute_next_process`
## ------------------------------------------------
# Only for illustration purposes.
pr_queue <- metaRangePriorityQueue$new()
pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env())
pr_queue$enqueue(pr)
pr_queue$update()
pr_queue$execute_next_process(verbose = TRUE)
## ------------------------------------------------
## Method `metaRangePriorityQueue$enqueue`
## ------------------------------------------------
pr_queue <- metaRangePriorityQueue$new()
pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env())
pr_queue$enqueue(pr)
pr_queue$get_future_queue()
## ------------------------------------------------
## Method `metaRangePriorityQueue$dequeue`
## ------------------------------------------------
pr_queue <- metaRangePriorityQueue$new()
pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env())
pr_queue$enqueue(pr)
pr_queue$dequeue(pr$get_PID())
pr_queue$get_future_queue()
## ------------------------------------------------
## Method `metaRangePriorityQueue$sort_future_queue`
## ------------------------------------------------
pr_queue <- metaRangePriorityQueue$new()
pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env())
pr_queue$enqueue(pr)
pr_queue$sort_future_queue()
# at least no error
## ------------------------------------------------
## Method `metaRangePriorityQueue$update`
## ------------------------------------------------
pr_queue <- metaRangePriorityQueue$new()
pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env())
pr_queue$enqueue(pr)
pr_queue$update()
pr_queue$get_queue()
## ------------------------------------------------
## Method `metaRangePriorityQueue$is_empty`
## ------------------------------------------------
pr_queue <- metaRangePriorityQueue$new()
stopifnot(pr_queue$is_empty())
## ------------------------------------------------
## Method `metaRangePriorityQueue$get_queue`
## ------------------------------------------------
pr_queue <- metaRangePriorityQueue$new()
pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env())
pr_queue$enqueue(pr)
pr_queue$update()
pr_queue$get_queue()
## ------------------------------------------------
## Method `metaRangePriorityQueue$get_future_queue`
## ------------------------------------------------
pr_queue <- metaRangePriorityQueue$new()
pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env())
pr_queue$enqueue(pr)
pr_queue$get_future_queue()
## ------------------------------------------------
## Method `metaRangePriorityQueue$get_current_index`
## ------------------------------------------------
pr_queue <- metaRangePriorityQueue$new()
pr <- metaRangeProcess$new("A", "1", \() {message("test")}, 1, new.env())
pr_queue$enqueue(pr)
pr_queue$update()
pr_queue$get_current_index()
## ------------------------------------------------
## Method `metaRangePriorityQueue$print`
## ------------------------------------------------
pr_queue <- metaRangePriorityQueue$new()
pr_queue$print()
metaRangeProcess object
Description
Creates an metaRangeProcess object in form of an R6 class that stores and handles all the individual parts that define a process.
Value
<metaRangeProcess>
A metaRangeProcess object.
Public fields
fun
<function>
The processes function.
Methods
Public methods
Method new()
Creates a new metaRangeProcess object
Usage
metaRangeProcess$new( process_name, id = "", process_fun, execution_priority, env, env_label = NULL )
Arguments
process_name
<string>
name of the process.id
<string>
optional ID of the process.process_fun
<function>
The function to be called when the process is executed. This function will be executed in the specified environment (see argument: env) and has access to all the variables in that environment. This function may not have any arguments, i.e.is.null(formals(process_fun))
must beTRUE
.execution_priority
<integer>
the priority of the process. The lower the number the earlier the process is executed. Note that the priority is only used to sort the processes in the priority queue. The actual execution order is determined by the order of the processes in the queue.env
<environment>
the environment where the process should be executed.env_label
<string>
optional name of the execution environment. Just used as a human readable label for debug purposes.
Returns
<metaRangeProcess>
A metaRangeProcess object.
Examples
# Note: Only for illustration purposes. Use the add_process method of the # simulation object to add processes to a simulation. pr <- metaRangeProcess$new( process_name = "ecological_process", process_fun = function() { cat("Execute ecological process!") }, execution_priority = 1L, env = new.env(), env_label = "a_species_name" ) pr
Method get_PID()
get the process ID
Usage
metaRangeProcess$get_PID()
Returns
<string>
The process ID
Examples
pr <- metaRangeProcess$new("A", "1", \() {}, 1, new.env()) pr$get_PID()
Method get_name()
get the process name
Usage
metaRangeProcess$get_name()
Returns
<string>
The process name
Examples
pr <- metaRangeProcess$new("A", "1", \() {}, 1, new.env()) pr$get_name()
Method get_priority()
get the process execution priority
Usage
metaRangeProcess$get_priority()
Returns
<integer>
The process execution priority
Examples
pr <- metaRangeProcess$new("A", "1", \() {}, 1, new.env()) pr$get_priority()
Method get_env_label()
get the name of the process execution environment
Usage
metaRangeProcess$get_env_label()
Returns
<string>
The name of the process execution environment or NULL
Examples
pr <- metaRangeProcess$new("A", "1", \() {}, 1, new.env(), "human_readable_label") pr$get_env_label()
Method print()
Prints information about the process to the console
Usage
metaRangeProcess$print()
Returns
<invisible self>
Examples
pr <- metaRangeProcess$new("A", "1", \() {}, 1, new.env()) pr$print()
See Also
Examples
## ------------------------------------------------
## Method `metaRangeProcess$new`
## ------------------------------------------------
# Note: Only for illustration purposes. Use the add_process method of the
# simulation object to add processes to a simulation.
pr <- metaRangeProcess$new(
process_name = "ecological_process",
process_fun = function() {
cat("Execute ecological process!")
},
execution_priority = 1L,
env = new.env(),
env_label = "a_species_name"
)
pr
## ------------------------------------------------
## Method `metaRangeProcess$get_PID`
## ------------------------------------------------
pr <- metaRangeProcess$new("A", "1", \() {}, 1, new.env())
pr$get_PID()
## ------------------------------------------------
## Method `metaRangeProcess$get_name`
## ------------------------------------------------
pr <- metaRangeProcess$new("A", "1", \() {}, 1, new.env())
pr$get_name()
## ------------------------------------------------
## Method `metaRangeProcess$get_priority`
## ------------------------------------------------
pr <- metaRangeProcess$new("A", "1", \() {}, 1, new.env())
pr$get_priority()
## ------------------------------------------------
## Method `metaRangeProcess$get_env_label`
## ------------------------------------------------
pr <- metaRangeProcess$new("A", "1", \() {}, 1, new.env(), "human_readable_label")
pr$get_env_label()
## ------------------------------------------------
## Method `metaRangeProcess$print`
## ------------------------------------------------
pr <- metaRangeProcess$new("A", "1", \() {}, 1, new.env())
pr$print()
metaRangeSimulation object
Description
Creates an simulation object in form of an R6 class that stores and handles all the individual parts that are necessary to run a simulation.
Value
A <metaRangeSimulation>
object
Public fields
ID
<string>
simulation identification.globals
<environment>
a place to store global variables.environment
<metaRangeEnvironment>
A metaRangeEnvironment that holds all the environmental values influencing the simulation.number_time_steps
<integer>
number of time steps in the simulation.time_step_layer
<integer>
vector of layer IDs that describe which environmental layer to use at each time step.current_time_step
<integer>
current time step.queue
<metaRangePriorityQueue>
manages the order in which the processes should be executed.processes
<list>
of global (simulation level)<metaRangeProcess>
(es).seed
<integer>
seed for the random number generator.
Methods
Public methods
Method new()
Creates a new metaRangeSimulation object.
Usage
metaRangeSimulation$new(source_environment, ID = NULL, seed = NULL)
Arguments
source_environment
<SpatRasterDataset>
created byterra::sds()
that represents the environment. The individual data sets represent different environmental variables (e.g. temperature or habitat availability) and the different layer of the data sets represent the different timesteps of the simulation. The function metaRangeSimulation$set_time_layer_mapping()
can be used to extend/ shorten the simulation timesteps and set the mapping between each time step and a corresponding environmental layer. This can be used e.g. to repeat the first (few) layer as a burn-in period. The number of layers must be the same for all data sets.ID
<string>
optional simulation identification string. Will be set automatically if none is specified.seed
<integer>
optional seed for the random number generator. Will be set automatically if none is specified.
Returns
A <metaRangeSimulation>
object.
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2)) sim <- metaRangeSimulation$new(source_environment = sim_env) sim
Method add_globals()
Add global variables to the simulation
Usage
metaRangeSimulation$add_globals(...)
Arguments
...
<any>
the variables to add. Variables to add to the simulation. They will be saved and accessible through the 'globals' field.
Returns
<invisible self>
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2)) sim <- metaRangeSimulation$new(source_environment = sim_env) sim$add_globals(a = 1, b = 2) sim$globals$a #> [1] 1
Method set_time_layer_mapping()
Set the time layer of the simulation.
Usage
metaRangeSimulation$set_time_layer_mapping(x)
Arguments
x
<integer>
vector of layer indices that describe which environmental layer to use at each time step.
Returns
<invisible self>
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2, nlyr = 4)) sim <- metaRangeSimulation$new(source_environment = sim_env) sim$set_time_layer_mapping(1:2) stopifnot(identical(sim$time_step_layer, 1:2))
Method get_current_time_step()
Get current time step
Usage
metaRangeSimulation$get_current_time_step()
Returns
<integer>
the current time step
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2)) sim <- metaRangeSimulation$new(source_environment = sim_env) sim$get_current_time_step() #> [1] 1
Method add_species()
Adds new species to the simulation
Usage
metaRangeSimulation$add_species(names)
Arguments
names
<character>
names of the species to add.
Returns
<invisible boolean>
TRUE
on success FALSE
on failure.
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2)) sim <- metaRangeSimulation$new(source_environment = sim_env) sim$add_species(c("species_1", "species_2")) sim$species_1
Method species_names()
Returns the names of all species in the simulation.
Usage
metaRangeSimulation$species_names()
Returns
<character>
vector of species names
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2)) sim <- metaRangeSimulation$new(source_environment = sim_env) sim$add_species("species_1") sim$add_species("species_2") sim$species_names() #> [1] "species_1" "species_2"
Method add_process()
Adds a process to the simulation.
Usage
metaRangeSimulation$add_process( species = NULL, process_name, process_fun, execution_priority, queue = TRUE )
Arguments
species
<character>
Names of the species that the process should be added to. IfNULL
the process will be added to the simulation object itself.process_name
<string>
Name of the process to add.process_fun
<named function>
The function to call when the process gets executed.execution_priority
<positive integer>
When this process should run within each time step. 1 == highest priority i.e. this function will be the executed first.queue
<boolean>
IfTRUE
the process will be added to the process execution queue directly. IfFALSE
the process will be added to the simulation but not to the queue, which means that in order to execute the process, it has to be added manually via the metaRangePriorityQueue$enqueue()
method.
Returns
<invisible self>
.
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2)) sim <- metaRangeSimulation$new(source_environment = sim_env) sim$add_species("species_1") sim$add_process("species_1", "species_process_1", function() {message("process_1")}, 1) sim$species_1$processes$species_process_1 sim$add_process(species = NULL, "global_process_2", function() {message("process_2")}, 2) sim$processes$global_process_2
Method add_traits()
Adds traits to a species.
Usage
metaRangeSimulation$add_traits(species, population_level = TRUE, ...)
Arguments
species
<character>
Names of the species that the traits should be added to.population_level
<boolean>
IfTRUE
the traits will be added at the population level (i.e. as a matrix with same dimensions (nrow/ncol) as the environment with one value for each population). This means that the traits either need to be single values that will be extended to such a matrix viabase::matrix()
or they already need to be a matrix with these dimension. IfFALSE
the traits will be added without any conversion and may have any type and dimension....
<atomic>
(seebase::is.atomic()
) The named traits to be added. Named means:Name = value
e.g.a = 1
.
Returns
<invisible self>
.
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2)) sim <- metaRangeSimulation$new(source_environment = sim_env) sim$add_species("species_1") sim$add_traits("species_1", population_level = TRUE, a = 1) sim$add_traits("species_1", population_level = FALSE, b = 2, c = "c") sim$species_1$traits$a #> [,1] [,2] #> [1,] 1 1 #> [2,] 1 1 sim$species_1$traits$b #> [1] 2 sim$species_1$traits$c #> [1] "c"
Method exit()
When called, will end the simulation (prematurely) once the current process is finished. Useful to e.g. end the simulation safely (i.e. without an error) when no species is alive anymore and there would be no benefit to continue the execution until the last time step.
Usage
metaRangeSimulation$exit()
Returns
invisible NULL
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2, nlyr = 4)) names(sim_env) <- "env_var_name" sim <- metaRangeSimulation$new(source_environment = sim_env) sim$add_species("species_1") sim$add_process("species_1", "species_process_1", function() {self$sim$exit()}, 1) sim$begin()
Method begin()
Begins the simulation
Usage
metaRangeSimulation$begin()
Returns
<invisible self>
The finished simulation
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2, nlyr = 4)) names(sim_env) <- "env_var_name" sim <- metaRangeSimulation$new(source_environment = sim_env) sim$add_process( species = NULL, "timestep_counter", function() { message("timestep: ", self$get_current_time_step()) }, 1 ) sim$begin()
Method print()
Prints information about the simulation to the console
Usage
metaRangeSimulation$print()
Returns
<invisible self>
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2)) sim <- metaRangeSimulation$new(source_environment = sim_env) sim$print()
Method summary()
Summarizes information about the simulation and outputs it to the console
Usage
metaRangeSimulation$summary()
Returns
<invisible self>
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2)) sim <- metaRangeSimulation$new(source_environment = sim_env) sim$summary()
Examples
## ------------------------------------------------
## Method `metaRangeSimulation$new`
## ------------------------------------------------
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
sim <- metaRangeSimulation$new(source_environment = sim_env)
sim
## ------------------------------------------------
## Method `metaRangeSimulation$add_globals`
## ------------------------------------------------
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
sim <- metaRangeSimulation$new(source_environment = sim_env)
sim$add_globals(a = 1, b = 2)
sim$globals$a
#> [1] 1
## ------------------------------------------------
## Method `metaRangeSimulation$set_time_layer_mapping`
## ------------------------------------------------
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2, nlyr = 4))
sim <- metaRangeSimulation$new(source_environment = sim_env)
sim$set_time_layer_mapping(1:2)
stopifnot(identical(sim$time_step_layer, 1:2))
## ------------------------------------------------
## Method `metaRangeSimulation$get_current_time_step`
## ------------------------------------------------
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
sim <- metaRangeSimulation$new(source_environment = sim_env)
sim$get_current_time_step()
#> [1] 1
## ------------------------------------------------
## Method `metaRangeSimulation$add_species`
## ------------------------------------------------
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
sim <- metaRangeSimulation$new(source_environment = sim_env)
sim$add_species(c("species_1", "species_2"))
sim$species_1
## ------------------------------------------------
## Method `metaRangeSimulation$species_names`
## ------------------------------------------------
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
sim <- metaRangeSimulation$new(source_environment = sim_env)
sim$add_species("species_1")
sim$add_species("species_2")
sim$species_names()
#> [1] "species_1" "species_2"
## ------------------------------------------------
## Method `metaRangeSimulation$add_process`
## ------------------------------------------------
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
sim <- metaRangeSimulation$new(source_environment = sim_env)
sim$add_species("species_1")
sim$add_process("species_1", "species_process_1", function() {message("process_1")}, 1)
sim$species_1$processes$species_process_1
sim$add_process(species = NULL, "global_process_2", function() {message("process_2")}, 2)
sim$processes$global_process_2
## ------------------------------------------------
## Method `metaRangeSimulation$add_traits`
## ------------------------------------------------
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
sim <- metaRangeSimulation$new(source_environment = sim_env)
sim$add_species("species_1")
sim$add_traits("species_1", population_level = TRUE, a = 1)
sim$add_traits("species_1", population_level = FALSE, b = 2, c = "c")
sim$species_1$traits$a
#> [,1] [,2]
#> [1,] 1 1
#> [2,] 1 1
sim$species_1$traits$b
#> [1] 2
sim$species_1$traits$c
#> [1] "c"
## ------------------------------------------------
## Method `metaRangeSimulation$exit`
## ------------------------------------------------
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2, nlyr = 4))
names(sim_env) <- "env_var_name"
sim <- metaRangeSimulation$new(source_environment = sim_env)
sim$add_species("species_1")
sim$add_process("species_1", "species_process_1", function() {self$sim$exit()}, 1)
sim$begin()
## ------------------------------------------------
## Method `metaRangeSimulation$begin`
## ------------------------------------------------
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2, nlyr = 4))
names(sim_env) <- "env_var_name"
sim <- metaRangeSimulation$new(source_environment = sim_env)
sim$add_process(
species = NULL,
"timestep_counter",
function() {
message("timestep: ", self$get_current_time_step())
},
1
)
sim$begin()
## ------------------------------------------------
## Method `metaRangeSimulation$print`
## ------------------------------------------------
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
sim <- metaRangeSimulation$new(source_environment = sim_env)
sim$print()
## ------------------------------------------------
## Method `metaRangeSimulation$summary`
## ------------------------------------------------
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
sim <- metaRangeSimulation$new(source_environment = sim_env)
sim$summary()
metaRangeSpecies object
Description
Creates an species object in form of an R6 class that stores and handles all the individual parts that define a species.
Value
A <metaRangeSpecies>
object.
Public fields
name
<string>
name or ID of the species.processes
<list>
of<metaRangeProcesses>
. The processes that describe how the species interacts with the environment, itself and other species.traits
<environment>
holds the traits of the species.sim
<metaRangeSimulation>
A reference to the metaRangeSimulation simulation object that the species is part of. Useful to access environmental data or data of other species.
Methods
Public methods
Method new()
Creates a new metaRangeSpecies object
Usage
metaRangeSpecies$new(name, sim)
Arguments
name
<string>
name or ID of the species.sim
<metaRangeSimulation>
A reference to the metaRangeSimulation simulation object that the species is part of. Useful to access environmental data or data of other species.
Returns
A <metaRangeSpecies>
object.
Examples
# The following is bad practice, since species should be added to a simulation # via the add_species method of the simulation object. But for illustration # purposes: sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2)) test_sim <- metaRangeSimulation$new(source_environment = sim_env) sp <- metaRangeSpecies$new(name = "species_01", sim = test_sim) sp
Method print()
Prints information about the species to the console
Usage
metaRangeSpecies$print()
Returns
<invisible self>
Examples
## ------------------------------------------------
## Method `metaRangeSpecies$new`
## ------------------------------------------------
# The following is bad practice, since species should be added to a simulation
# via the add_species method of the simulation object. But for illustration
# purposes:
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
test_sim <- metaRangeSimulation$new(source_environment = sim_env)
sp <- metaRangeSpecies$new(name = "species_01", sim = test_sim)
sp
Metabolic scaling
Description
A function to calculate the metabolic scaling of a parameter, based on the metabolic theory of ecology (Brown et al. 2004).
Usage
metabolic_scaling(
normalization_constant,
scaling_exponent,
mass,
temperature,
E,
k = 8.617333e-05
)
Arguments
normalization_constant |
|
scaling_exponent |
|
mass |
|
temperature |
|
E |
|
k |
|
Details
Equation:
The function uses the equation in the form of:
parameter = normalization\_constant \cdot mass^{scaling\_exponent} \cdot e^{\frac{Activation\_energy}{k \cdot temperature}}
Parameter:
Note the different scaling values for different parameter. The following is a summary from table 4 in Brown, Sibly and Kodric-Brown (2012) (see references).
Parameter | Scaling exponent | Activation energy |
resource usage | 3/4 | -0.65 |
reproduction, mortality | -1/4 | -0.65 |
carrying capacity | -3/4 | 0.65 |
Units:
1 \ electronvolt = 1.602176634 \cdot 10^{-19} Joule
Boltzmann \ constant = 1.380649 \cdot 10^{-23} \frac{Joule}{Kelvin}
Boltzmann \ constant \ in \frac{eV}{K} = 8.617333e-05 = \frac{1.380649 \cdot 10^{-23}}{1.602176634 \cdot 10^{-19}}
Value
<numeric>
The scaled parameter.
References
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. and West, G.B. (2004) Toward a Metabolic Theory of Ecology. Ecology, 85 1771–1789. doi:10.1890/03-9000
Brown, J.H., Sibly, R.M. and Kodric-Brown, A. (2012) Introduction: Metabolism as the Basis for a Theoretical Unification of Ecology. In Metabolic Ecology (eds R.M. Sibly, J.H. Brown and A. Kodric-Brown) doi:10.1002/9781119968535.ch
See Also
calculate_normalization_constant()
Examples
reproduction_rate <- 0.25
E_reproduction_rate <- -0.65
estimated_normalization_constant <-
calculate_normalization_constant(
parameter_value = reproduction_rate,
scaling_exponent = -1/4,
mass = 100,
reference_temperature = 273.15 + 10,
E = E_reproduction_rate
)
metabolic_scaling(
normalization_constant = estimated_normalization_constant,
scaling_exponent = -1/4,
mass = 100,
temperature = 273.15 + 20,
E = E_reproduction_rate
)
carrying_capacity <- 100
E_carrying_capacity <- 0.65
estimated_normalization_constant <-
calculate_normalization_constant(
parameter_value = carrying_capacity,
scaling_exponent = -3/4,
mass = 100,
reference_temperature = 273.15 + 10,
E = E_carrying_capacity
)
metabolic_scaling(
normalization_constant = estimated_normalization_constant,
scaling_exponent = -3/4,
mass = 100,
temperature = 273.15 + 20,
E = E_carrying_capacity
)
Negative Exponential kernel
Description
Negative Exponential kernel
Usage
negative_exponential_function(x, mean_dispersal_dist)
Arguments
x |
|
mean_dispersal_dist |
|
Details
The negative exponential kernel is defined as:
f(x) = \frac{1}{2 \pi a^2} e^{-\frac{x}{a}}
where a
is the mean dispersal distance divided by 2.
Value
<numeric>
The probability at distance x.
References
Nathan, R., Klein, E., Robledo-Arnuncio, J.J. and Revilla, E. (2012) Dispersal kernels: review. in: Dispersal Ecology and Evolution pp. 187–210. (eds J. Clobert, M. Baguette, T.G. Benton and J.M. Bullock), Oxford, UK: Oxford Academic, 2013. doi:10.1093/acprof:oso/9780199608898.003.0015
Examples
negative_exponential_function(1, 1)
Plotting function
Description
Plots the specified current environment of a metaRangeSimulation object.
Usage
## S3 method for class 'metaRangeEnvironment'
plot(x, env_name, col, as_timeseries = FALSE, main = NULL, ...)
Arguments
x |
|
env_name |
|
col |
|
as_timeseries |
|
main |
|
... |
additional arguments passed to terra::plot or base::plot. |
Value
<invisible NULL>
.
Examples
sim_env <- terra::sds(terra::rast(vals = rep(1:4, 4), nrow = 2, ncol = 2, nlyr = 4))
names(sim_env) <- "env_01"
test_sim <- metaRangeSimulation$new(source_environment = sim_env)
test_sim$environment$set_current(1)
plot(test_sim$environment, "env_01")
plot(test_sim$environment, "env_01", as_timeseries = TRUE)
Plotting function
Description
Plots the specified element of a metaRangeSimulation object.
Usage
## S3 method for class 'metaRangeSimulation'
plot(x, obj, name, col, ...)
Arguments
x |
|
obj |
|
name |
|
col |
|
... |
additional arguments passed to terra::plot or base::plot. |
Value
<invisible NULL>
.
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
names(sim_env) <- "env_01"
test_sim <- metaRangeSimulation$new(source_environment = sim_env)
plot(test_sim, "environment", "env_01")
test_sim$add_species("species_01")
test_sim$add_traits("species_01", trait_01 = matrix(1, nrow = 2, ncol = 2))
plot(test_sim, "species_01", "trait_01")
test_sim$add_globals("global_01" = 1:10)
plot(test_sim, "globals", "global_01")
Plotting function
Description
Plots the specified trait of a metaRangeSpecies object.
Usage
## S3 method for class 'metaRangeSpecies'
plot(x, trait_name, col, main = NULL, ...)
Arguments
x |
|
trait_name |
|
col |
|
main |
|
... |
additional arguments passed to terra::plot or base::plot. |
Value
<invisible NULL>
.
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
names(sim_env) <- "env_01"
test_sim <- metaRangeSimulation$new(source_environment = sim_env)
test_sim$add_species("species_01")
test_sim$add_traits("species_01", trait_01 = matrix(1:4, nrow = 2, ncol = 2))
plot(test_sim$species_01, "trait_01")
Print traits or globals
Description
Print method for species traits and simulation globals.
Usage
## S3 method for class 'metaRangeVariableStorage'
print(x, ...)
Arguments
x |
|
... |
|
Value
<invisible x>
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
names(sim_env) <- "env_01"
test_sim <- metaRangeSimulation$new(source_environment = sim_env)
test_sim$add_species("species_01")
test_sim$add_traits(species = "species_01", a = 1)
print(test_sim$species_01$traits)
test_sim$add_globals(b = 2)
print(test_sim$globals)
Ricker reproduction model with Allee effects
Description
An implementation of the Ricker reproduction model with Allee effects based on (Cabral and Schurr, 2010) with variable overcompensation and an extension to handle negative reproduction rates.
Usage
ricker_allee_reproduction_model(
abundance,
reproduction_rate,
carrying_capacity,
allee_threshold,
overcomp_factor = as.numeric(c(1))
)
Arguments
abundance |
|
reproduction_rate |
|
carrying_capacity |
|
allee_threshold |
|
overcomp_factor |
|
Details
Equations:
If reproduction\_rate >= 0
(based on: Cabral and Schurr, 2010):
N_{t+1} = N_t e^{b r \frac{(K - N_t)(N_t - C)}{(K - C)^2})}
If reproduction\_rate < 0
:
N_{t+1} = N_t \cdot e^{r}
With:
-
N_t
= abundance at time t -
N_{t+1}
= abundance at time t+1 -
r
= reproduction rate -
K
= carrying capacity -
C
= (critical) Allee threshold -
b
= overcompensation factor
Note that:
-
abundance
should generally be greater than 0. -
reproduction_rate
,carrying_capacity
andallee_threshold
should either all have the same size as the input abundance or all be of length 1. -
carrying_capacity
should be greater than 0. If it is 0 or less, the abundance will be set to 0. -
allee_threshold
should be less thancarrying_capacity
. If it is greater than or equal, the abundance will be set to 0.
Important Note:
To optimize performance, the functions modifies the abundance in-place.
This mean the input abundance will be modified (See Examples).
Since the result of this function is usually assigned to the same variable as the input abundance, this is unnoticable in most use cases.
Should you wish to keep the input abundance unchanged, you can rlang::duplicate()
it before passing it to this function.
Value
<numeric>
vector (or matrix) of abundances.
References
Cabral, J.S. and Schurr, F.M. (2010) Estimating demographic models for the range dynamics of plant species. Global Ecology and Biogeography, 19, 85–97. doi:10.1111/j.1466-8238.2009.00492.x
Examples
ricker_allee_reproduction_model(
abundance = 50,
reproduction_rate = 2,
carrying_capacity = 100,
allee_threshold = -100
)
ricker_allee_reproduction_model(
abundance = 50,
reproduction_rate = 2,
carrying_capacity = 100,
allee_threshold = -100,
overcomp_factor = 4
)
ricker_allee_reproduction_model(
abundance = matrix(10, 5, 5),
reproduction_rate = 0.25,
carrying_capacity = 100,
allee_threshold = 20
)
ricker_allee_reproduction_model(
abundance = matrix(10, 5, 5),
reproduction_rate = matrix(seq(-0.5, 0.5, length.out = 25), 5, 5),
carrying_capacity = matrix(100, 5, 5),
allee_threshold = matrix(20, 5, 5)
)
ricker_allee_reproduction_model(
abundance = matrix(10, 5, 5),
reproduction_rate = matrix(1, 5, 5),
carrying_capacity = matrix(100, 5, 5),
allee_threshold = matrix(seq(0, 100, length.out = 25), 5, 5)
)
ricker_allee_reproduction_model(
abundance = matrix(10, 5, 5),
reproduction_rate = matrix(seq(0, -2, length.out = 25), 5, 5),
carrying_capacity = matrix(100, 5, 5),
allee_threshold = matrix(20, 5, 5)
)
# Note that the input abundance is modified in-place
abu <- 10
res <- ricker_allee_reproduction_model(
abundance = abu,
reproduction_rate = 0.25,
carrying_capacity = 100,
allee_threshold = -100
)
stopifnot(identical(abu, res))
Ricker reproduction model
Description
An implementation of the Ricker reproduction model (Ricker, 1954) with an extension to handle negative reproduction rates.
Usage
ricker_reproduction_model(abundance, reproduction_rate, carrying_capacity)
Arguments
abundance |
|
reproduction_rate |
|
carrying_capacity |
|
Details
Equations:
If reproduction\_rate >= 0
(Ricker, 1954):
N_{t+1} = N_t e^{r (1 - \frac{N_t}{K})}
If reproduction\_rate < 0
:
N_{t+1} = N_t \cdot e^{r}
With:
-
N_t
= abundance at time t -
N_{t+1}
= abundance at time t+1 -
r
= reproduction rate -
K
= carrying capacity
Note that:
-
abundance
should generally be greater than 0. -
reproduction_rate
andcarrying_capacity
should either both have the same size as the input abundance or both be of length 1. -
carrying_capacity
should generally be greater than 0. If it is 0 or less, the abundance will be set to 0.
Important Note:
To optimize performance, the functions modifies the abundance in-place.
This mean the input abundance will be modified (See Examples).
Since the result of this function is usually assigned to the same variable as the input abundance, this is unnoticable in most use cases.
Should you wish to keep the input abundance unchanged, you can rlang::duplicate()
it before passing it to this function.
Value
<numeric>
vector (or matrix) of abundances.
References
Ricker, W.E. (1954) Stock and recruitment. Journal of the Fisheries Research Board of Canada, 11, 559–623. doi:10.1139/f54-039
Examples
ricker_reproduction_model(
abundance = 10,
reproduction_rate = 0.25,
carrying_capacity = 100
)
ricker_reproduction_model(
abundance = matrix(10, 5, 5),
reproduction_rate = 0.25,
carrying_capacity = 100
)
ricker_reproduction_model(
abundance = matrix(10, 5, 5),
reproduction_rate = matrix(seq(-0.5, 0.5, length.out = 25), 5, 5),
carrying_capacity = matrix(100, 5, 5)
)
ricker_reproduction_model(
abundance = matrix(10, 5, 5),
reproduction_rate = matrix(seq(0, -2, length.out = 25), 5, 5),
carrying_capacity = matrix(100, 5, 5)
)
# Note that the input abundance is modified in-place
abu <- 10
res <- ricker_reproduction_model(
abundance = abu,
reproduction_rate = 0.25,
carrying_capacity = 100
)
stopifnot(identical(abu, res))
Save function
Description
Saves the specified traits of a metaRangeSpecies object.
Usage
save_species(x, traits = NULL, prefix = NULL, path, overwrite = FALSE, ...)
Arguments
x |
|
traits |
|
prefix |
|
path |
|
overwrite |
|
... |
additional arguments passed to terra::writeRaster. |
Details
The generated file names are of the form
file.path(path, paste0(prefix, species_name, "_", trait_name, ".file_extension"))
.
If the trait is in a matrix or raster form, the file extension is .tif
. Otherwise it is .csv
.
The prefix is optional and mainly useful to add a time step to the file name, in case the trait
is saved multiple times during a simulation.
Value
<invisible character>
the paths to the saved files.
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
names(sim_env) <- "env_01"
test_sim <- metaRangeSimulation$new(source_environment = sim_env)
test_sim$add_species("species_01")
test_sim$add_traits(
"species_01",
trait_01 = matrix(1, nrow = 2, ncol = 2),
trait_02 = matrix(2, nrow = 2, ncol = 2)
)
file_prefix <- "This_could_be_a_time_step"
directory_name <- tempdir()
res_path <- save_species(
test_sim$species_01,
traits = "trait_01",
prefix = file_prefix,
path = directory_name
)
# the following should be TRUE
# but might fail due to floating point errors (that's why we round the values)
identical(
round(terra::as.matrix(terra::rast(res_path), wide = TRUE)),
round(test_sim$species_01$traits[["trait_01"]])
)
# test overwrite
res_path2 <- save_species(
test_sim$species_01,
traits = "trait_01",
prefix = file_prefix,
path = directory_name,
overwrite = TRUE
)
stopifnot(identical(res_path, res_path2))
# Saving all traits
res_path3 <- save_species(
test_sim$species_01,
prefix = basename(tempfile()),
path = directory_name
)
res_path3
# cleanup
unlink(c(res_path, res_path3))
stopifnot(all(!file.exists(res_path, res_path3)))
Set verbosity of metaRange simulation
Description
Just a wrapper for options(metaRange.verbose = [0 | 1 | 2])
but documented.
If 0
, metaRange functions will print no messages to the console.
If 1
, metaRange functions will print some messages to the console.
If 2
, metaRange functions will print many messages to the console.
Usage
set_verbosity(verbose)
Arguments
verbose |
|
Value
<invisible list>
a list with the previous verbosity setting.
Examples
set_verbosity(0)
getOption("metaRange.verbose")
Summary for metaRange simulation
Description
Print a summary of the simulation to the console.
Usage
## S3 method for class 'metaRangeSimulation'
summary(object, ...)
Arguments
object |
|
... |
|
Value
<invisible NULL>
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
names(sim_env) <- "env_01"
test_sim <- metaRangeSimulation$new(source_environment = sim_env)
test_sim$add_species("species_01")
summary(test_sim)
Summary for metaRange species
Description
Summary for metaRange species
Usage
## S3 method for class 'metaRangeSpecies'
summary(object, ...)
Arguments
object |
|
... |
|
Value
<invisible NULL>
Examples
sim_env <- terra::sds(terra::rast(vals = 1, nrow = 2, ncol = 2))
names(sim_env) <- "env_01"
test_sim <- metaRangeSimulation$new(source_environment = sim_env)
test_sim$add_species("species_01")
summary(test_sim$species_01)