## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(metaggR) ## ----------------------------------------------------------------------------- # Judges' estimates: E1 = c(50, 134, 206, 290, 326, 374) # Judges' predictions of others: P1 = c(26, 92, 116, 218, 218, 206) # Knowledge-weighted estimate: knowledge_weighted_estimate(E1,P1) ## ----------------------------------------------------------------------------- library(metaggR) data("E_CALORIES_INITIAL") data("E_CALORIES_FINAL") data("P_CALORIES") data("THETA_CALORIES") ## ----------------------------------------------------------------------------- meal = 1 # True number of calories in the first meal: (theta = THETA_CALORIES[meal]) # Judges' initial estimates of the number of calories in the first meal: (E_initial = E_CALORIES_INITIAL[[meal]]) # Judges' final estimates of the number of calories in the first meal: (E_final = E_CALORIES_FINAL[[meal]]) # Judges' predictions of others' average estimate of the number of calories in the first meal: (P = P_CALORIES[[meal]]) ## ----------------------------------------------------------------------------- # RMSE of the initial estimates: sqrt(mean((E_initial-theta)^2)) # RMSE of the final estimates: sqrt(mean((E_final-theta)^2)) # RMSE of the knowledge-weighted estimate based on judges' initial estimates: (KWE1 = knowledge_weighted_estimate(E_initial, P, no_inf_check = TRUE)) sqrt((KWE1 - theta)^2) # RMSE of the knowledge-weighted estimate based on judges' final estimates: (KWE2 = knowledge_weighted_estimate(E_final, P, no_inf_check = TRUE)) sqrt((KWE2 - theta)^2)