## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(musclesyneRgies) ## ---- eval = FALSE------------------------------------------------------------ # # Load the built-in example data set # data("FILT_EMG") # # # Create cluster for parallel computing if not already done # clusters <- objects() # # if (sum(grepl("^cl$", clusters)) == 0) { # # Decide how many processor threads have to be excluded from the cluster # # It is a good idea to leave at least one free, so that the machine can be # # used during computation # cl <- parallel::makeCluster(max(1, parallel::detectCores() - 1)) # } # # Extract synergies in parallel (will speed up computation only for larger data sets) # # with a useful progress bar from `pbapply` # SYNS <- pbapply::pblapply(FILT_EMG, musclesyneRgies::synsNMF, cl = cl) # # parallel::stopCluster(cl) ## ----------------------------------------------------------------------------- # Thirty-cycle locomotor primitive from Santuz & Akay (2020) data(primitive) # HFD with k_max = 10 to consider only the most linear part of the log-log plot # (it's the default value for this function anyway) Higuchi_fd <- HFD(primitive$signal, k_max = 10)$Higuchi message("Higuchi's fractal dimension: ", round(Higuchi_fd, 3)) # H with min_win = 200 points, which is the length of each cycle Hurst_exp <- Hurst(primitive$signal, min_win = max(primitive$time))$Hurst message("Hurst exponent: ", round(Hurst_exp, 3))