## ---- echo = FALSE, message = FALSE-------------------------------------- knitr::opts_chunk$set(collapse = T, comment = "#>") library(neuroim) ## ------------------------------------------------------------------------ # attach MNI BrainSpace instance data("MNI_SPACE_1MM") # we create a spherical ROI centered around voxel coordinates [20,20,20] with a 5mm radius, # filling all values in the ROI with 100. sphere <- RegionSphere(MNI_SPACE_1MM, c(20,20,20), radius=5, fill=100) # to extract the voxel coordinates of the sphere: vox <- coords(sphere) # to get the values at the coordinate locations vals <- values(sphere) all.equal(vals, rep(100, length(vals))) ## ------------------------------------------------------------------------ rpoint <- c(-50,-28,10) # Because RegionSphere takes a coordinate in voxel units, # we need to convert to the real-world MNI coordinate to grid coordinates. vox <- coordToGrid(MNI_SPACE_1MM, rpoint) sphere <- RegionSphere(MNI_SPACE_1MM, vox, radius=10, fill=1) dim(coords(sphere)) # convert back to MNI coordinates mnicoords <- indexToCoord(MNI_SPACE_1MM, indices(sphere)) ## compute center of mass of MNI coords in ROI (should be close to original coordinate) centerOfMass <- colMeans(mnicoords) centerOfMass ## ------------------------------------------------------------------------ sphere <- RegionSphere(MNI_SPACE_1MM, c(50,50,50), radius=10, fill=1) sparsevol <- SparseBrainVolume(values(sphere),MNI_SPACE_1MM,indices=indices(sphere)) sum(sparsevol) == sum(values(sphere)) all(dim(sparsevol) == dim(MNI_SPACE_1MM))