--- title: neuroim2 Cookbook date: '`r Sys.Date()`' output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{neuroim2 Cookbook} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} params: family: red css: albers.css resource_files: - albers.css - albers.js includes: in_header: |- --- ```{r, echo = FALSE, message = FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>") library(neuroim2) library(purrr) library(assertthat) ``` This vignette collects small, task‑oriented examples (“cookbook” style) for common `NeuroVec` workflows that don’t warrant a full standalone vignette. We assume basic familiarity with `NeuroVec` from `vignette("NeuroVector")`. ## Reducing a 4D NeuroVec over time into a NeuroVol Sometimes you want to take a 4D time‑series (`NeuroVec`) and collapse the time dimension into a single 3D volume by applying a reduction function to each voxel’s time‑series (e.g., temporal mean, standard deviation, or any custom summary). The pattern is: 1. Convert the `NeuroVec` to a voxel × time matrix with `as.matrix()`. 2. Apply a function over the time axis for each voxel (row). 3. Reshape back to 3D and wrap as a `NeuroVol`. ```{r} file_name <- system.file("extdata", "global_mask_v4.nii", package = "neuroim2") vec <- read_vec(file_name) # 4D NeuroVec reduce_ts_to_vol <- function(x, FUN) { dm <- dim(x) stopifnot(length(dm) == 4) mat <- as.matrix(x) # voxels × time vals <- apply(mat, 1, FUN) # one value per voxel NeuroVol(array(vals, dm[1:3]), drop_dim(space(x))) } # Example: temporal mean volume mean_vol <- reduce_ts_to_vol(vec, mean) mean_vol ``` You can plug in any summary function that maps a numeric vector to a single value (e.g. `median`, a trimmed mean, robust summaries, etc.). ## Splitting a NeuroVec into blocks by an index vector If you have a single concatenated `NeuroVec` with multiple logical blocks along the time dimension (e.g., runs or sessions), you can “un‑concatenate” it into one `NeuroVec` per block using `split_blocks()`. Create an index vector of length `dim(vec)[4]` indicating which block each timepoint belongs to, then split the time index and convert each subset to a sub-vector (this is what \code{split_blocks()} does internally): ```{r} space4 <- NeuroSpace(c(10, 10, 10, 9), c(1, 1, 1)) vec4d <- NeuroVec(array(rnorm(10 * 10 * 10 * 9), dim = c(10, 10, 10, 9)), space4) # Suppose timepoints 1–3 belong to block 1, 4–6 to block 2, 7–9 to block 3 block_idx <- c(1, 1, 1, 2, 2, 2, 3, 3, 3) idx_list <- split(seq_len(dim(vec4d)[4]), block_idx) blocks <- lapply(idx_list, function(ii) sub_vector(vec4d, ii)) length(blocks) # 3 blocks dim(blocks[[1]]) # first block: 10×10×10×3 dim(blocks[[2]]) # second block: 10×10×10×3 dim(blocks[[3]]) # third block: 10×10×10×3 ``` The result is a list of `NeuroVec` objects; access elements with `blocks[[i]]` for block `i`. This is effectively the inverse of concatenation by time. The helper \code{split_blocks()} exposes this pattern with method dispatch for `NeuroVec`. ## Converting a NeuroVec to a memory‑mapped MappedNeuroVec For large 4D datasets or shared‑memory workflows on HPC, it is often useful to back a `NeuroVec` by a memory‑mapped file using `MappedNeuroVec`. The `as_mmap()` helper converts common vector types (`NeuroVec`, `SparseNeuroVec`, `FileBackedNeuroVec`) into a `MappedNeuroVec`, writing an uncompressed NIfTI file if needed. ```{r} file_name <- system.file("extdata", "global_mask_v4.nii", package = "neuroim2") vec <- read_vec(file_name) # DenseNeuroVec in memory # Convert to a memory-mapped representation backed by a temporary .nii file mvec <- as_mmap(vec) mvec # Or explicitly choose an output file (must be uncompressed for mmap) tmp_nii <- tempfile(fileext = ".nii") mvec2 <- as_mmap(vec, file = tmp_nii, overwrite = TRUE) inherits(mvec2, "MappedNeuroVec") ``` For sparse data (`SparseNeuroVec`), `as_mmap()` first densifies the vector and then writes a full 4D NIfTI before mapping it, trading memory once for much more efficient subsequent access and multi‑process sharing. ## Mapping a kernel over a 3D NeuroVol with `mapf` To apply a spatial kernel (e.g. a 3×3×3 mean filter) over a 3D volume, use `mapf()` with a `Kernel` object. This keeps the familiar `NeuroVol`/`NeuroSpace` metadata while doing neighborhood computations. ```{r} bspace <- NeuroSpace(c(10, 10, 10), c(1, 1, 1)) vol <- NeuroVol(array(rnorm(10 * 10 * 10), c(10, 10, 10)), bspace) # Simple 3×3×3 mean kernel kern <- Kernel(c(3, 3, 3), vdim = c(3, 3, 3)) smoothed_vol <- mapf(vol, kern) smoothed_vol ``` You can also pass a logical mask to restrict computation to a region while keeping the output volume in the original space. ## Splitting a NeuroVec into ROIs by voxel clusters Given voxelwise cluster labels (for example, from a parcellation), `split_clusters()` can turn a `NeuroVec` into a list of `ROIVec` objects—one per cluster—each containing the time‑series of voxels in that cluster. ```{r} file_name <- system.file("extdata", "global_mask_v4.nii", package = "neuroim2") vec <- read_vec(file_name) # Fake cluster labels over the full 3D grid n_vox <- prod(dim(vec)[1:3]) cl_lab <- sample(1:5, n_vox, replace = TRUE) roi_list <- split_clusters(vec, cl_lab) length(roi_list) # number of non-empty clusters roi_list[[1]] # ROIVec for cluster "1" coords(roi_list[[1]])[1:5, ] # first few voxel coordinates dim(values(roi_list[[1]])) # time × voxels in that cluster ``` This is useful when you want to work directly with voxel‑level ROIs per cluster rather than first building a `ClusteredNeuroVec`. ## Group‑wise voxel reduction with `split_reduce` When you have a voxel‑wise grouping (e.g. tissue classes, parcels, or custom regions), `split_reduce()` can compute one summary time‑series per group directly from a `NeuroVec`. ```{r} file_name <- system.file("extdata", "global_mask_v4.nii", package = "neuroim2") vec <- read_vec(file_name) n_vox <- prod(dim(vec)[1:3]) # Assign each voxel to one of three arbitrary groups fac <- factor(sample(1:3, n_vox, replace = TRUE)) # Default: mean over voxels in each group (per timepoint) group_ts <- split_reduce(vec, fac) dim(group_ts) # groups × timepoints rownames(group_ts) # "1", "2", "3" ``` Here each row of `group_ts` is the mean time‑series of all voxels in that group; you can supply any function `FUN` that maps a numeric vector to a scalar (e.g. `median`, robust summaries, etc.). ## Concatenating NeuroVols into a NeuroVec To build a 4D `NeuroVec` from multiple 3D `NeuroVol` objects that share the same space, use `concat()` along the time dimension. ```{r} sp3 <- NeuroSpace(c(10, 10, 10), c(1, 1, 1)) vol1 <- NeuroVol(array(rnorm(10 * 10 * 10), c(10, 10, 10)), sp3) vol2 <- NeuroVol(array(rnorm(10 * 10 * 10), c(10, 10, 10)), sp3) vol3 <- NeuroVol(array(rnorm(10 * 10 * 10), c(10, 10, 10)), sp3) # Concatenate volumes into a 4D NeuroVec (time dimension length 3) vec_3 <- concat(vol1, vol2, vol3) dim(vec_3) # 10 × 10 × 10 × 3 space(vec_3) # inherits spatial metadata from inputs ``` All input volumes must have identical spatial dimensions and `NeuroSpace`; otherwise `concat()` will error. ## Concatenating NeuroVecs along the time dimension You can also concatenate multiple `NeuroVec` objects (e.g. runs or sessions) into a longer 4D vector, again with `concat()`. ```{r} file_name <- system.file("extdata", "global_mask_v4.nii", package = "neuroim2") run1 <- read_vec(file_name) # 4D NeuroVec run2 <- read_vec(file_name) # same space and shape # Concatenate timepoints: result has dim(...)[4] = dim(run1)[4] + dim(run2)[4] run12 <- concat(run1, run2) dim(run1) dim(run2) dim(run12) ``` This is the natural inverse of splitting by blocks: you can break a long `NeuroVec` into segments with `split_blocks()` and then reconstruct a longer series again with `concat()`. ## Connected components in a 3D mask To identify spatially contiguous clusters in a 3D volume or mask, use `conn_comp()` on a `NeuroVol`. This is handy for summarizing thresholded statistical maps or cleaning up binary masks. ```{r} sp <- NeuroSpace(c(10, 10, 10), c(1, 1, 1)) arr <- array(0, c(10, 10, 10)) # Two small 2×2×2 clusters in opposite corners arr[1:2, 1:2, 1:2] <- 1 arr[8:9, 8:9, 8:9] <- 1 vol <- NeuroVol(arr, sp) # Find connected components above threshold 0 (26-connectivity by default) cc <- conn_comp(vol, threshold = 0) max(cc$index) # number of clusters (should be 2) cc$size[cc$size > 0] # cluster sizes in voxels ``` You can also request a `cluster_table` of summary statistics or `local_maxima` for peak finding: ```{r} cc2 <- conn_comp(vol, threshold = 0, cluster_table = TRUE) head(cc2$cluster_table) ```