--- title: Resampling, downsampling, and reorientation output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Resampling, downsampling, and reorientation} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, echo = FALSE, message = FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>") library(neuroim2) ``` This vignette shows how to: - Resample an image into a new grid (`resample_to()` / `resample()`). - Downsample 3D/4D data to coarser resolution (`downsample()`). - Change orientation while keeping physical coordinates consistent (`reorient()`). We’ll use the example NIfTI that ships with the package: ```{r} demo_path <- system.file("extdata", "global_mask_v4.nii", package = "neuroim2") vol <- read_vol(demo_path) # 3D NeuroVol vec4 <- read_vec(demo_path) # 4D NeuroVec sp <- space(vol) dim(vol) spacing(vol) ``` ## 1. Resampling to a new space `resample_to()` is a convenience wrapper around the S4 `resample()` methods that accepts human‑readable interpolation names. You specify a *target* grid (`NeuroSpace` or `NeuroVol`) and choose `"nearest"`, `"linear"`, or `"cubic"` interpolation: ```{r} # Create a target space with 2× smaller voxels in each dimension sp_fine <- NeuroSpace( dim = sp@dim * 2L, spacing = sp@spacing / 2, origin = sp@origin, trans = trans(vol) ) vol_fine_lin <- resample_to(vol, sp_fine, method = "linear") dim(vol_fine_lin) spacing(vol_fine_lin) ``` Typical patterns: - Use `"nearest"` when resampling label or mask images. - Use `"linear"` or `"cubic"` for continuous data (e.g. intensities, statistics). You can also call `resample(source, target, interpolation = 0/1/3)` directly if you prefer numeric codes. ## 2. Downsampling to coarser resolution When you want fewer voxels (e.g. to speed up analysis or plotting) but don’t need arbitrarily defined target grids, use `downsample()` on a `NeuroVec` or `NeuroVol`. ### 2.1 Downsample a 4D NeuroVec ```{r} # Downsample by a factor of 0.5 in each spatial dimension vec_down_factor <- downsample(vec4, factor = 0.5) dim(vec4) dim(vec_down_factor) spacing(vec4) spacing(vec_down_factor) ``` You can also specify a target spacing or output dimensions: ```{r} # Target spacing (mm) vec_down_spacing <- downsample(vec4, spacing = c(4, 4, 4)) # Target spatial dimensions vec_down_outdim <- downsample(vec4, outdim = c(32, 32, 16)) ``` Exactly one of `factor`, `spacing`, or `outdim` must be supplied. The current implementation uses a simple box‑averaging scheme in space. ### 2.2 Downsample a 3D NeuroVol The same interface applies to volumes: ```{r} vol_down_factor <- downsample(vol, factor = 0.5) dim(vol) dim(vol_down_factor) ``` This is useful for coarse previews or multi‑scale workflows. ## 3. Reorienting images `reorient()` updates the mapping between voxel indices and physical coordinates without changing the raw data array. This is helpful when you want a canonical orientation (e.g. RAS) or need to match another dataset’s axis directions. For `NeuroSpace`, you supply three axis codes: ```{r} sp_lpi <- sp # assume input is LPI‑like sp_ras <- reorient(sp_lpi, c("R", "A", "S")) sp_lpi sp_ras ``` For `NeuroVol` / `NeuroVec`, you typically reorient via their space: ```{r} vol_ras <- NeuroVol(as.array(vol), sp_ras) dim(vol_ras) spacing(vol_ras) ``` Note that `reorient()` preserves physical positions; it only changes how grid indices are interpreted in space. Coordinate transforms (`coord_to_grid`, `grid_to_coord`) automatically respect the new orientation. ## 4. Putting it together Common combinations: - Use `resample_to()` when you need to match a specific template grid (e.g. MNI space or another subject’s image). - Use `downsample()` when you just want fewer voxels while preserving overall FOV and orientation. - Use `reorient()` when you want a consistent anatomical convention (RAS/LPI) across images without resampling.