## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- message = FALSE--------------------------------------------------------- library(nlpsem) mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE) ## ---- message = FALSE--------------------------------------------------------- load(system.file("extdata", "getLGCM_examples.RData", package = "nlpsem")) ## ---- message = FALSE, eval = FALSE------------------------------------------- # # Load ECLS-K (2011) data # data("RMS_dat") # RMS_dat0 <- RMS_dat # # Re-baseline the data so that the estimated initial status is for the # # starting point of the study # baseT <- RMS_dat0$T1 # RMS_dat0$T1 <- RMS_dat0$T1 - baseT # RMS_dat0$T2 <- RMS_dat0$T2 - baseT # RMS_dat0$T3 <- RMS_dat0$T3 - baseT # RMS_dat0$T4 <- RMS_dat0$T4 - baseT # RMS_dat0$T5 <- RMS_dat0$T5 - baseT # RMS_dat0$T6 <- RMS_dat0$T6 - baseT # RMS_dat0$T7 <- RMS_dat0$T7 - baseT # RMS_dat0$T8 <- RMS_dat0$T8 - baseT # RMS_dat0$T9 <- RMS_dat0$T9 - baseT # # Standardize time-invariant covariates (TICs) # ## ex1 and ex2 are standardized growth TICs in models # RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning) # RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus) # xstarts <- mean(baseT) ## ---- message = FALSE, eval = FALSE------------------------------------------- # Math_LGCM_BLS_f <- getLGCM( # dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline", # intrinsic = TRUE, records = 1:9, growth_TIC = NULL, res_scale = 0.1 # ) # Math_LGCM_BLS_r <- getLGCM( # dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline", # intrinsic = FALSE, records = 1:9, growth_TIC = NULL, res_scale = 0.1 # ) ## ----------------------------------------------------------------------------- getLRT( full = Math_LGCM_BLS_f@mxOutput, reduced = Math_LGCM_BLS_r@mxOutput, boot = FALSE, rep = NA ) ## ---- message = FALSE, eval = FALSE------------------------------------------- # paraBLS.TIC_LGCM.f <- c( # "alpha0", "alpha1", "alpha2", "alphag", # paste0("psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")), # "residuals", # paste0("beta1", c(0:2, "g")), paste0("beta2", c(0:2, "g")), # paste0("mux", 1:2), paste0("phi", c("11", "12", "22")), # "mueta0", "mueta1", "mueta2", "mu_knot" # ) # Math_LGCM_TIC_BLS_f <- getLGCM( # dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline", # intrinsic = TRUE, records = 1:9, growth_TIC = c("ex1", "ex2"), res_scale = 0.1, # paramOut = TRUE, names = paraBLS.TIC_LGCM.f # ) ## ----------------------------------------------------------------------------- Math_LGCM_TIC_BLS_f@Estimates Figure1 <- getFigure( model = Math_LGCM_TIC_BLS_f@mxOutput, nClass = NULL, cluster_TIC = NULL, sub_Model = "LGCM", y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9, m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month", outcome = "Mathematics" ) show(Figure1)