## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- message = FALSE--------------------------------------------------------- library(nlpsem) mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE) ## ---- message = FALSE--------------------------------------------------------- load(system.file("extdata", "getMediation_examples.RData", package = "nlpsem")) ## ---- message = FALSE, eval = FALSE------------------------------------------- # # Load ECLS-K (2011) data # data("RMS_dat") # RMS_dat0 <- RMS_dat # # Re-baseline the data so that the estimated initial status is for the # # starting point of the study # baseT <- RMS_dat0$T1 # RMS_dat0$T1 <- RMS_dat0$T1 - baseT # RMS_dat0$T2 <- RMS_dat0$T2 - baseT # RMS_dat0$T3 <- RMS_dat0$T3 - baseT # RMS_dat0$T4 <- RMS_dat0$T4 - baseT # RMS_dat0$T5 <- RMS_dat0$T5 - baseT # RMS_dat0$T6 <- RMS_dat0$T6 - baseT # RMS_dat0$T7 <- RMS_dat0$T7 - baseT # RMS_dat0$T8 <- RMS_dat0$T8 - baseT # RMS_dat0$T9 <- RMS_dat0$T9 - baseT # RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning) # xstarts <- mean(baseT) ## ---- message = FALSE, eval = FALSE------------------------------------------- # paraMed2_BLS <- c( # "muX", "phi11", "alphaM1", "alphaMr", "alphaM2", "mugM", # paste0("psi", c("M1M1", "M1Mr", "M1M2", "MrMr", "MrM2", "M2M2"), "_r"), # "alphaY1", "alphaYr", "alphaY2", "mugY", # paste0("psi", c("Y1Y1", "Y1Yr", "Y1Y2", "YrYr", "YrY2", "Y2Y2"), "_r"), # paste0("beta", rep(c("M", "Y"), each = 3), rep(c(1, "r", 2), 2)), # paste0("beta", c("M1Y1", "M1Yr", "M1Y2", "MrYr", "MrY2", "M2Y2")), # "muetaM1", "muetaMr", "muetaM2", "muetaY1", "muetaYr", "muetaY2", # paste0("Mediator", c("11", "1r", "12", "rr", "r2", "22")), # paste0("total", c("1", "r", "2")), # "residualsM", "residualsY", "residualsYM" # ) # Med2_LGCM_BLS <- getMediation( # dat = RMS_dat0, t_var = rep("T", 2), y_var = "M", m_var = "R", # x_type = "baseline", x_var = "ex1", curveFun = "bilinear spline", # records = list(1:9, 1:9), res_scale = c(0.1, 0.1), res_cor = 0.3, # paramOut = TRUE, names = paraMed2_BLS # ) ## ----------------------------------------------------------------------------- Med2_LGCM_BLS@Estimates ## ---- message = FALSE, eval = FALSE------------------------------------------- # paraMed3_BLS <- c( # "muetaX1", "muetaXr", "muetaX2", "mugX", # paste0("psi", c("X1X1", "X1Xr", "X1X2", "XrXr", "XrX2", "X2X2")), # "alphaM1", "alphaMr", "alphaM2", "mugM", # paste0("psi", c("M1M1", "M1Mr", "M1M2", "MrMr", "MrM2", "M2M2"), "_r"), # "alphaY1", "alphaYr", "alphaY2", "mugY", # paste0("psi", c("Y1Y1", "Y1Yr", "Y1Y2", "YrYr", "YrY2", "Y2Y2"), "_r"), # paste0("beta", c("X1Y1", "X1Yr", "X1Y2", "XrYr", "XrY2", "X2Y2", # "X1M1", "X1Mr", "X1M2", "XrMr", "XrM2", "X2M2", # "M1Y1", "M1Yr", "M1Y2", "MrYr", "MrY2", "M2Y2")), # "muetaM1", "muetaMr", "muetaM2", "muetaY1", "muetaYr", "muetaY2", # paste0("mediator", c("111", "11r", "112", "1rr", "1r2", "122", "rr2", "r22", "rrr", "222")), # paste0("total", c("11", "1r", "12", "rr", "r2", "22")), # "residualsX", "residualsM", "residualsY", "residualsMX", "residualsYX", "residualsYM" # ) # set.seed(20191029) # Med3_LGCM_BLS <- getMediation( # dat = RMS_dat0, t_var = rep("T", 3), y_var = "S", m_var = "M", x_type = "longitudinal", # x_var = "R", curveFun = "bilinear spline", records = list(2:9, 1:9, 1:9), # res_scale = c(0.1, 0.1, 0.1), res_cor = c(0.3, 0.3), tries = 10, paramOut = TRUE, # names = paraMed3_BLS # ) ## ----------------------------------------------------------------------------- Med3_LGCM_BLS@Estimates