--- title: "Plot rms model summaries and predictions" author: "Richard Meitern" date: "06/11/2019" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Plot rms model summaries and predictions} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warnings = FALSE, fig.width = 6, fig.height = 4 ) library(rms) ``` ### Load the required libraries ```{r setup} #the regression modelling by F. Harrell library(rms) #the extension for plotting the rms summary objects library(ormPlot) #to modify plots library(ggplot2) ``` ### Looking at the bundled data OrmPlot has `educ_data` bundled. `educ_data` is used in this vignette to show the functionality of the package. To familiarize with the data: ```{r eval=FALSE} #show first 6 rows head(educ_data) ``` ```{r echo=FALSE, results="asis"} pander::pandoc.table(head(educ_data), split.tables=Inf) ``` ```{r, eval = FALSE} #show variable explanation help(educ_data) ``` ### Setting up rms datadist The rms package requires that a `datadist` object is set up properly. According to `datadist` documentation: `q.effect` is a set of two quantiles for computing the range of continuous variables to use in estimating regression effects. Defaults are `c(.25,.75)`, which yields inter-quartile-range odds ratios ```{r} #q.effect determines for what range the odds ratios are given on plots dd <- datadist(educ_data, q.effect = c(0.5, 0.75)) #set it also to options options(datadist="dd") ``` ### Creating a model ```{r} #see help(orm) for further info orm_model<-orm(educ_3 ~ Rural + sex + n_siblings + cran_rzs + height_rzs + FW_rzs + YOBc + (YOBc * sex) + (YOBc * Rural), data = educ_data) ``` ### Plotting the model predictions with CI The main advantage of using ormPlot is that you get plots with confidence intervals shown on the plot. The simplest way is to predict for only one value. Plotting returns a customizable ggplot object. ```{r} plot(orm_model, cran_rzs) ``` For more complex models specify facet column and rows. ```{r} plot(orm_model, cran_rzs, Rural, sex) ``` You can easily set custom labels. ```{r} p<-plot(orm_model, cran_rzs, Rural, sex, xlab = "Cranial volume (residuals to age an birth date)", facet_labels = list(Rural = c("Urban", "Rural"),sex=c("Male","Female"))) colors <- c("#4a9878", "#0a191e", "#d8b65c") educ_names <- c("Primary", "Secondary", "Tertiary") # further modifing like any other ggplot final_plot<-p + labs(color = "Education", fill = "Education") + scale_color_manual(values = colors, labels = educ_names) + scale_fill_manual(values = colors, labels = educ_names) final_plot ``` Save like any ggplot graph. ```{r eval = FALSE} ggsave("educ_cran.svg",final_plot, height = 8 ,width = 8) ``` ### Plotting the model summary The easiest way is to just plot the summary object ```{r fig.width=7, fig.height=4 } forestplot(summary(orm_model)) ``` If this does not look nice enough you can also get `ggplot2` objects to customize to your needs. The best way to get customizable plots is to specify `return_ggplots=TRUE` ```{r fig.width=6} # you can use also use plot instead of forestplot plots<-forestplot(summary(orm_model), return_ggplots=T) plots[[1]] plots[[2]] ``` These can be joined using the join_ggplots command. You can edit the plots as any ggplot plot ```{r, fig.width=7} p1 <- plots[[1]] + scale_x_discrete(labels=c("Mean", "Lower CI", "Upper CI"), position = "top", name = NULL) # the x axis is actually y axis because the cordinates are flipped with coord_flip() p2 <- plots[[2]] + scale_y_continuous(breaks = c(0.5, 0.7, 0.9, 1.1), position = "right") forestplot<-join_ggplots(p1,p2) ``` To save as svg fur further editing just use `ggsave` from `ggplot2` ```{r, eval=FALSE} ggsave("forestplot.svg",forestplot) ```