Version: | 1.0-2 |
Date: | 2022-01-25 |
Title: | Panel Data Econometrics with R |
Depends: | R (≥ 3.5.0), plm |
Suggests: | car, dplyr, ggplot2, lmtest, msm, pglm, splm, survival, texreg |
Description: | Data sets for the Panel Data Econometrics with R <doi:10.1002/9781119504641> book. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://cran.r-project.org/package=pder |
Encoding: | UTF-8 |
NeedsCompilation: | no |
Packaged: | 2022-01-25 12:13:45 UTC; yves |
Author: | Yves Croissant |
Maintainer: | Yves Croissant <yves.croissant@univ-reunion.fr> |
Repository: | CRAN |
Date/Publication: | 2022-01-26 20:02:25 UTC |
Callbacks to Job Applications
Description
a pseudo-panel of 1518 resumes from 2014
number of observations : 6072
number of individual observations : 4
country : United States
package : binomial
JEL codes: E24, E32, J14, J22, J23, J64
Chapter : 08
Usage
data(CallBacks)
Format
A dataframe containing:
- jobid
the job index
- unempdur
unemployment duration in month
- interim
a dummy for interim experience
- callback
a dummy for call backs
- old
a dummy for age 57-58
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Farber, Henry S.; Silverman, Dan and Till von Wachter (2016) “Determinants of Callbacks to Job Applications: An Audit Study”, American Economic Review, 106(5), 314-318, doi: 10.1257/aer.p20161010 .
How to Overcome Organization Failure in Organization
Description
a pseudo-panel of 240 individuals
number of observations : 7168
number of individual observations : 30
country : United States and Spain
package : ordinalpanelexpe
JEL codes: C92, D23
Chapter : 08
Usage
data(CoordFailure)
Format
A dataframe containing:
- firm
the firm index
- id
the individual index
- period
the period
- place
either Cleveland or Barcelona
- bonus1
the bonus for the first block of 10 rounds
- bonus2
the bonus for the second block of 10 rounds
- bonus3
the bonus for the third block of 10 rounds
- effort
the level of effort of the employee
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Brandts, Jordi and David J. Cooper (2006) “A Change Would Do You Good... An Experimental Study on How to Overcome Coordination Failure in Organizations”, American Economic Review, 96(3), 669-693, doi: 10.1257/aer.96.3.669 .
The Relation Between Democraty and Income
Description
5-yearly observations of 211 countries from 1950 to 2000
number of observations : 2321
number of time-series : 11
country : world
package : panel
JEL codes: D72, O47
Chapter : 02, 07
Usage
data(DemocracyIncome)
Format
A dataframe containing:
- country
country
- year
the starting year of the 5-years period
- democracy
democracy index
- income
the log of the gdp per capita
- sample
a dummy variable to select the subset used in the original article
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Daron Acemoglu, Simon Johnson, James A. Robinson and Pierre Yared (2008) “Income and Democracy”, American Economic Review, 98(3), 808-842, doi: 10.1257/aer.98.3.808 .
Examples
#### Example 7-1
## ------------------------------------------------------------------------
## Not run:
data("DemocracyIncome", package = "pder")
## ------------------------------------------------------------------------
data("DemocracyIncome", package="pder")
set.seed(1)
di2000 <- subset(DemocracyIncome, year == 2000,
select = c("democracy", "income", "country"))
di2000 <- na.omit(di2000)
di2000$country <- as.character(di2000$country)
di2000$country[- c(2,5, 23, 16, 17, 22, 71, 125, 37, 43, 44,
79, 98, 105, 50, 120, 81, 129, 57, 58,99)] <- NA
if(requireNamespace("ggplot2")){
library("ggplot2")
ggplot(di2000, aes(income, democracy, label = country)) +
geom_point(size = 0.4) +
geom_text(aes(y= democracy + sample(0.03 * c(-1, 1),
nrow(di2000), replace = TRUE)),
size = 2) +
theme(legend.text = element_text(size = 6),
legend.title= element_text(size = 8),
axis.title = element_text(size = 8),
axis.text = element_text(size = 6))
}
## ------------------------------------------------------------------------
library("plm")
pdim(DemocracyIncome)
head(DemocracyIncome, 4)
#### Example 7-2
## ------------------------------------------------------------------------
mco <- plm(democracy ~ lag(democracy) + lag(income) + year - 1,
DemocracyIncome, index = c("country", "year"),
model = "pooling", subset = sample == 1)
## ------------------------------------------------------------------------
mco <- plm(democracy ~ lag(democracy) + lag(income),
DemocracyIncome, index = c("country", "year"),
model = "within", effect = "time",
subset = sample == 1)
coef(summary(mco))
#### Example 7-3
## ------------------------------------------------------------------------
within <- update(mco, effect = "twoways")
coef(summary(within))
#### Example 7-4
## ------------------------------------------------------------------------
ahsiao <- plm(diff(democracy) ~ lag(diff(democracy)) +
lag(diff(income)) + year - 1 |
lag(democracy, 2) + lag(income, 2) + year - 1,
DemocracyIncome, index = c("country", "year"),
model = "pooling", subset = sample == 1)
coef(summary(ahsiao))[1:2, ]
#### Example 7-5
## ------------------------------------------------------------------------
diff1 <- pgmm(democracy ~ lag(democracy) + lag(income) |
lag(democracy, 2:99)| lag(income, 2),
DemocracyIncome, index=c("country", "year"),
model="onestep", effect="twoways", subset = sample == 1)
coef(summary(diff1))
## ------------------------------------------------------------------------
diff2 <- update(diff1, model = "twosteps")
coef(summary(diff2))
#### Example 7-7
## ------------------------------------------------------------------------
sys2 <- pgmm(democracy ~ lag(democracy) + lag(income) |
lag(democracy, 2:99)| lag(income, 2),
DemocracyIncome, index = c("country", "year"),
model = "twosteps", effect = "twoways",
transformation = "ld")
coef(summary(sys2))
#### Example 7-8
## ------------------------------------------------------------------------
sqrt(diag(vcov(diff2)))[1:2]
sqrt(diag(vcovHC(diff2)))[1:2]
#### Example 7-10
## ------------------------------------------------------------------------
mtest(diff2, order = 2)
#### Example 7-9
## ------------------------------------------------------------------------
sargan(diff2)
sargan(sys2)
## End(Not run)
The Relation Between Democraty and Income
Description
25-yearly observations of 25 countries from 1850 to 2000
number of observations : 175
number of time-series : 7
country : world
package : panel
JEL codes: D72, O47
Chapter : 02, 07
Usage
data(DemocracyIncome25)
Format
A dataframe containing:
- country
country
- year
the starting year of the 5-years period
- democracy
democracy index
- income
the log of the gdp per capita
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Daron Acemoglu, Simon Johnson, James A. Robinson and Pierre Yared (2008) “Income and Democracy”, American Economic Review, 98(3), 808-842, doi: 10.1257/aer.98.3.808 .
Examples
#### Example 2-7
## ------------------------------------------------------------------------
library("plm")
data("DemocracyIncome25", package = "pder")
DI <- pdata.frame(DemocracyIncome25)
summary(lag(DI$income))
ercomp(democracy ~ lag(income), DI)
models <- c("within", "random", "pooling", "between")
sapply(models, function(x)
coef(plm(democracy ~ lag(income), DI, model = x))["lag(income)"])
#### Example 7-6
## ------------------------------------------------------------------------
data("DemocracyIncome25", package = "pder")
pdim(DemocracyIncome25)
## ------------------------------------------------------------------------
diff25 <- pgmm(democracy ~ lag(democracy) + lag(income) |
lag(democracy, 2:99) + lag(income, 2:99),
DemocracyIncome25, model = "twosteps")
## ------------------------------------------------------------------------
diff25lim <- pgmm(democracy ~ lag(democracy) + lag(income) |
lag(democracy, 2:4)+ lag(income, 2:4),
DemocracyIncome25, index=c("country", "year"),
model="twosteps", effect="twoways", subset = sample == 1)
diff25coll <- pgmm(democracy ~ lag(democracy) + lag(income) |
lag(democracy, 2:99)+ lag(income, 2:99),
DemocracyIncome25, index=c("country", "year"),
model="twosteps", effect="twoways", subset = sample == 1,
collapse = TRUE)
sapply(list(diff25, diff25lim, diff25coll), function(x) coef(x)[1:2])
#### Example 7-9
## ------------------------------------------------------------------------
sapply(list(diff25, diff25lim, diff25coll),
function(x) sargan(x)[["p.value"]])
Diffusion of Haemodialysis Technology
Description
yearly observations of 50 states from 1977 to 1990
number of observations : 700
number of time-series : 14
country : United States
package : panel
JEL codes: I18, O31
Chapter : 09
Usage
data(Dialysis)
Format
A dataframe containing:
- state
the state id
- time
the year of observation
- diffusion
the number of equipment divided by the number of the equipment in the given state for the most recent period
- trend
a linear trend
- regulation
a dummy variable for the presence of a certificate of need regulation for the given state and the given period
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Steven B. Caudill, Jon M. Ford and David L. Kaserman (1995) “Certificate of Need Regulation and the Diffusion of Innovations : a Random Coefficient Model”, Journal of Applied Econometrics, 10, 73–78., doi: 10.1002/jae.3950100107 .
Examples
#### Example 9-1
## ------------------------------------------------------------------------
library("plm")
## ------------------------------------------------------------------------
data("Dialysis", package = "pder")
rndcoef <- pvcm(log(diffusion / (1 - diffusion)) ~ trend + trend:regulation,
Dialysis, model="random")
summary(rndcoef)
## ------------------------------------------------------------------------
cbind(coef(rndcoef), stdev = sqrt(diag(rndcoef$Delta)))
Dynamics of Charitable Giving
Description
a pseudo-panel of 32 individuals from 2006
number of observations : 1039
number of individual observations : 4-80
country : United States
package : limdeppanel
JEL codes: C93, D64, D82, H41, L31, Z12
Chapter : 08
Usage
data(Donors)
Format
A dataframe containing:
- id
the id of the sollicitor
- solsex
the sex of the sollicitor
- solmin
does the sollicitor belongs to a minority ?
- beauty
beauty rating for the sollicitor
- assertive
assertive rating for the sollicitor
- social
social rating for the sollicitor
- efficacy
efficacy rating for the sollicitor
- performance
performance rating for the sollicitor
- confidence
confidence rating for the sollicitor
- age
age of the individual
- sex
sex of the individual
- min
does the individual belongs to a minority
- treatment
the treatment, one of "vcm", "sgift" and "lgift"
- refgift
has the individual refused the gift ?
- donation
the amount of the donation
- prior
has the individual been visited during the previous campaign ?
- prtreat
the treatment during the previous campaign, one of "none", "vcm", and "lottery"
- prcontr
has the individual made a donation during the previous campaign ?
- prdonation
the amount of the donation during the previous campaign
- prsolsex
the sex of the sollicitor during the previous campaign
- prsolmin
did the sollicitor of the previous campaign belong to a minority ?
- prbeauty
beauty rating for the sollicitor of the previous campaign
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Landry, Craig E.; Lange, Andreas; List, John A.; Price, Michael K. and Nicholas G. Rupp (2010) “Is a Donor in Hand Better Than Two in the Bush ? Evidence From a Natural Field Experiment”, American Economic Review, 100(3), 958–983, doi: 10.1257/aer.100.3.958 .
Examples
#### Example 8-5
## ------------------------------------------------------------------------
## Not run:
data("Donors", package = "pder")
library("plm")
T3.1 <- plm(donation ~ treatment + prcontr, Donors, index = "id")
T3.2 <- plm(donation ~ treatment * prcontr - prcontr, Donors, index = "id")
T5.A <- pldv(donation ~ treatment + prcontr, Donors, index = "id",
model = "random", method = "bfgs")
T5.B <- pldv(donation ~ treatment * prcontr - prcontr, Donors, index = "id",
model = "random", method = "bfgs")
## End(Not run)
Evapotranspiration
Description
a pseudo-panel of 86 areas from 2008
number of observations : 430
number of individual observations : 5
country : France
package : panel
Chapter : 10
Usage
data(EvapoTransp)
Format
A dataframe containing:
- id
observation site
- period
measuring period
- et
evapotranspiration
- prec
precipitation
- meansmd
mean soil moisture deficit
- potet
potential evapotranspiration
- infil
infiltration rate
- biomass
biomass
- biomassp1
biomass in early growing season
- biomassp2
biomass in main growth period
- biomassp3
peak biomass
- biomassp4
peak biomass after clipping
- biomassp5
biomass in autumn
- plantcover
plant cover
- softforbs
soft-leaved forbs
- tallgrass
tall grass
- diversity
species diversity
- matgram
mat-forming graminoids
- dwarfshrubs
dwarf shrubs
- legumes
abundance of legumes
Source
kindly provided by the authors
References
Obojes, N.; Bahn, M.; Tasser, E.; Walde, J.; Inauen, N.; Hiltbrunner, E.; Saccone, P.; Lochet, J.; ClĂ©ment, J. and S. Lavorel (2015) “Vegetation Effects on the Water Balance of Mountain Grasslands Depend on Climatic Conditions”, Ecohydrology, 8(4), 552-569, doi: 10.1002/eco.1524 .
Examples
#### Example 10-14
## ------------------------------------------------------------------------
## Not run:
data("EvapoTransp", package = "pder")
data("etw", package = "pder")
if (requireNamespace("splm")){
library("splm")
evapo <- et ~ prec + meansmd + potet + infil + biomass + plantcover +
softforbs + tallgrass + diversity + matgram + dwarfshrubs + legumes
semsr.evapo <- spreml(evapo, data=EvapoTransp, w=etw,
lag=FALSE, errors="semsr")
summary(semsr.evapo)
}
## ------------------------------------------------------------------------
library("plm")
if (requireNamespace("lmtest")){
coeftest(plm(evapo, EvapoTransp, model="pooling"))
}
## ------------------------------------------------------------------------
if (requireNamespace("lmtest") & requireNamespace("splm")){
coeftest(spreml(evapo, EvapoTransp, w=etw, errors="sem"))
}
#### Example 10-17
## ------------------------------------------------------------------------
if (requireNamespace("lmtest")){
saremsrre.evapo <- spreml(evapo, data = EvapoTransp,
w = etw, lag = TRUE, errors = "semsr")
summary(saremsrre.evapo)$ARCoefTable
round(summary(saremsrre.evapo)$ErrCompTable, 6)
}
## End(Not run)
Financial Institutions and Growth
Description
5-yearly observations of 78 countries from 1960 to 1995
number of observations : 546
number of time-series : 7
country : world
package : panel
JEL codes: G20, O16, O47, C23, C33, O15
Chapter : 07
Usage
data(FinanceGrowth)
Format
A dataframe containing:
- country
country name
- period
period
- growth
growth rate * 100
- privo
log private credit / GDP
- lly
log liquid liabilities / GDP
- btot
log bank credit/total credit
- lgdp
log initial gdp per capita (PPP)
- sec
mean years of secondary schooling
- gov
log government spending / GDP
- lbmp
log(1 black market premium)
- lpi
log(1 + inflation rate)
- trade
log (imports + exports)/GDP
Source
http://www.cgdev.org/content/publications/detail/14256
References
Levine, Ross; Loayza, Norman and Thorsten Beck (2000) “Financial Intermediation and Growth: Causality and Causes”, Journal of Monetary Economics, 46, 31-77, doi: 10.1016/S0304-3932(00)00017-9 .
Roodman, David (2009) “A Note on the Theme of Two Many Instruments”, Oxford Bulletin of Economics An Statistics, 71(1), 135–158, doi: 10.1111/j.1468-0084.2008.00542.x .
Foreign Trade of Developing Countries
Description
yearly observations of 31 countries from 1963 to 1986
number of observations : 744
number of time-series : 24
country : developing countries
package : panelivreg
JEL codes: O19, C51, F17
Chapter : 02, 06
Usage
data(ForeignTrade)
Format
A dataframe containing:
- country
country name
- year
year
- exports
nominal exports deflated by the unit value of exports per capita
- imports
nominal imports deflated by the unit value of exports per capita
- resimp
official foreing reserves (in US dollars) divided by nominal imports (in US dollars)
- gnp
real GNP per capita
- pgnp
trend real GNP per capita calculated by fitting linear trend yit*=y0iexp(gi t), where y0i is the initial value of real gnp per capita for country i and gi is the ith country's average growth rate over 1964-1986
- gnpw
real genp for USA per capita
- pm
unit value of imports (in US dollars), 1980 = 100
- px
unit value of exports (in US dollars), 1980 = 100
- cpi
domestic CPI, 1980 = 100
- pw
US producer's price index, 1980 = 100
- exrate
exchange rate (price of US dollars in local currency), 1980 = 1
- consump
domestic consumption per capita,
- invest
domestic fixed gross investment per capita
- income
domestic disposable income per capita
- pop
population
- reserves
official foreing reserves (in US dollars)
- money
domestic money supply per capita
- trend
trend dummy, 1964 = 1
- pwcpi
log of us producer price index divided by domestic cpi
- importspmpx
log of nominal imports divided by export prices
- pmcpi
log of imports price divided by domestic cpi
- pxpw
log of exports price divided by domestic cpi
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Kinal, T. and K. Lahiri (1993) “On the Estimation of Simultaneous-equations Error-components Models with An Application to a Model of Developing Country Foreign Trade”, Journal of Applied Economics, 8, 81-92, doi: 10.1002/jae.3950080107 .
Examples
#### Example 2-4
## ------------------------------------------------------------------------
library("plm")
data("ForeignTrade", package = "pder")
FT <- pdata.frame(ForeignTrade)
summary(FT$gnp)
ercomp(imports ~ gnp, FT)
models <- c("within", "random", "pooling", "between")
sapply(models, function(x) coef(plm(imports ~ gnp, FT, model = x))["gnp"])
#### Example 6-2
## ------------------------------------------------------------------------
data("ForeignTrade", package = "pder")
w1 <- plm(imports~pmcpi + gnp + lag(imports) + lag(resimp) |
lag(consump) + lag(cpi) + lag(income) + lag(gnp) + pm +
lag(invest) + lag(money) + gnpw + pw + lag(reserves) +
lag(exports) + trend + pgnp + lag(px),
ForeignTrade, model = "within")
r1 <- update(w1, model = "random", random.method = "nerlove",
random.dfcor = c(1, 1), inst.method = "baltagi")
## ------------------------------------------------------------------------
phtest(r1, w1)
## ------------------------------------------------------------------------
r1b <- plm(imports ~ pmcpi + gnp + lag(imports) + lag(resimp) |
lag(consump) + lag(cpi) + lag(income) + lag(px) +
lag(reserves) + lag(exports) | lag(gnp) + pm +
lag(invest) + lag(money) + gnpw + pw + trend + pgnp,
ForeignTrade, model = "random", inst.method = "baltagi",
random.method = "nerlove", random.dfcor = c(1, 1))
phtest(w1, r1b)
## ------------------------------------------------------------------------
rbind(within = coef(w1), ec2sls = coef(r1b)[-1])
## ------------------------------------------------------------------------
elast <- sapply(list(w1, r1, r1b),
function(x) c(coef(x)["pmcpi"],
coef(x)["pmcpi"] / (1 - coef(x)["lag(imports)"])))
dimnames(elast) <- list(c("ST", "LT"), c("w1", "r1", "r1b"))
elast
## ------------------------------------------------------------------------
rbind(within = coef(summary(w1))[, 2],
ec2sls = coef(summary(r1b))[-1, 2])
#### Example 6-4
## ------------------------------------------------------------------------
eqimp <- imports ~ pmcpi + gnp + lag(imports) +
lag(resimp) | lag(consump) + lag(cpi) + lag(income) +
lag(px) + lag(reserves) + lag(exports) | lag(gnp) + pm +
lag(invest) + lag(money) + gnpw + pw + trend + pgnp
eqexp <- exports ~ pxpw + gnpw + lag(exports) |
lag(gnp) + pw + lag(consump) + pm + lag(px) + lag(cpi) |
lag(money) + gnpw + pgnp + pop + lag(invest) +
lag(income) + lag(reserves) + exrate
r12 <- plm(list(import.demand = eqimp,
export.demand = eqexp),
data = ForeignTrade, index = 31, model = "random",
inst.method = "baltagi", random.method = "nerlove",
random.dfcor = c(1, 1))
summary(r12)
## ------------------------------------------------------------------------
rbind(ec2sls = coef(summary(r1b))[-1, 2],
ec3sls = coef(summary(r12), "import.demand")[-1, 2])
Impact of Institutions on Cumulative Research
Description
yearly observations of 216 articles from 1970 to 2001
number of observations : 4880
number of time-series : 32
country : United States
package : countpanel
JEL codes: D02, D83, I23, O30
Chapter : 08
Usage
data(GiantsShoulders)
Format
A dataframe containing:
- pair
the pair article index
- article
the article index
- brc
material of the article is deposit on a Biological Ressource Center
- pubyear
publication year of the article
- brcyear
year of the deposit in brc of the material related to the article
- year
the year index
- citations
the number of citations
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Furman, Jeffrey L. and Scott Stern (2011) “Climbing Atop the Shoulders of Giants: the Impact of Institutions on Cumulative Research”, American Economic Review, 101(5), 1933-1963, doi: 10.1257/aer.101.5.1933 .
Examples
#### Example 8-6
## ------------------------------------------------------------------------
## Not run:
data("GiantsShoulders", package = "pder")
head(GiantsShoulders)
## ------------------------------------------------------------------------
if (requireNamespace("dplyr")){
library("dplyr")
GiantsShoulders <- mutate(GiantsShoulders, age = year - pubyear)
cityear <- summarise(group_by(GiantsShoulders, brc, age),
cit = mean(citations, na.rm = TRUE))
GiantsShoulders <- mutate(GiantsShoulders,
window = as.numeric( (brc == "yes") &
abs(brcyear - year) <= 1),
post_brc = as.numeric( (brc == "yes") &
year - brcyear > 1),
age = year - pubyear)
GiantsShoulders$age[GiantsShoulders$age == 31] <- 0
#GiantsShoulders$year[GiantsShoulders$year
#GiantsShoulders$year[GiantsShoulders$year
GiantsShoulders$year[GiantsShoulders$year < 1975] <- 1970
GiantsShoulders$year[GiantsShoulders$year >= 1975 & GiantsShoulders$year < 1980] <- 1975
if (requireNamespace("pglm")){
library("pglm")
t3c1 <- lm(log(1 + citations) ~ brc + window + post_brc + factor(age),
data = GiantsShoulders)
t3c2 <- update(t3c1, . ~ .+ factor(pair) + factor(year))
t3c3 <- pglm(citations ~ brc + window + post_brc + factor(age) + factor(year),
data = GiantsShoulders, index = "pair",
effect = "individual", model = "within", family = negbin)
t3c4 <- pglm(citations ~ window + post_brc + factor(age) + factor(year),
data = GiantsShoulders, index = "article",
effect = "individual", model = "within", family = negbin)
## screenreg(list(t3c2, t3c3, t3c4),
## custom.model.names = c("ols: age/year/pair-FE",
## "NB:age/year/pair-FE", "NB: age/year/article-FE"),
## omit.coef="(factor)|(Intercept)", digits = 3)
}
}
## End(Not run)
House Prices Data
Description
yearly observations of 49 regions from 1976 to 2003
number of observations : 1421
number of time-series : 29
country : United States
package : hedprice
JEL codes: C51, R31
Chapter : 09, 10
Usage
data(HousePricesUS)
Format
A dataframe containing:
- state
state index
- year
year
- names
state name
- plate
state number plate index
- region
region index
- region.name
region name
- price
real house price index, 1980=100
- income
real per-capita income
- pop
total population
- intrate
real interest rate on borrowing
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Holly, S.; Pesaran, M.G. and T. Yamagata (2010) “A Spatio-temporal Model of House Prices in the USA”, Journal of Econometrics, 158(1), 160–173, doi: 10.1016/j.jeconom.2010.03.040 .
Millo, Giovanni (2015) “Narrow Replication of 'spatio-temporal Model of House Prices in the Usa', Using R”, Journal of Applied Econometrics, 30(4), 703–704, doi: 10.1002/jae.2424 .
Examples
#### Example 4-11
## ------------------------------------------------------------------------
## Not run:
data("HousePricesUS", package = "pder")
library("plm")
php <- pdata.frame(HousePricesUS)
## ------------------------------------------------------------------------
cbind("rho" = pcdtest(diff(log(php$price)), test = "rho")$statistic,
"|rho|" = pcdtest(diff(log(php$price)), test = "absrho")$statistic)
## ------------------------------------------------------------------------
regions.names <- c("New Engl", "Mideast", "Southeast", "Great Lks",
"Plains", "Southwest", "Rocky Mnt", "Far West")
corr.table.hp <- cortab(diff(log(php$price)), grouping = php$region,
groupnames = regions.names)
colnames(corr.table.hp) <- substr(rownames(corr.table.hp), 1, 5)
round(corr.table.hp, 2)
## ------------------------------------------------------------------------
pcdtest(diff(log(price)) ~ diff(lag(log(price))) + diff(lag(log(price), 2)),
data = php)
#### Example 9-2
## ------------------------------------------------------------------------
data("HousePricesUS", package = "pder")
swmod <- pvcm(log(price) ~ log(income), data = HousePricesUS, model= "random")
mgmod <- pmg(log(price) ~ log(income), data = HousePricesUS, model = "mg")
coefs <- cbind(coef(swmod), coef(mgmod))
dimnames(coefs)[[2]] <- c("Swamy", "MG")
coefs
#### Example 9-3
## ------------------------------------------------------------------------
if (requireNamespace("texreg")){
library("texreg")
data("RDSpillovers", package = "pder")
fm.rds <- lny ~ lnl + lnk + lnrd
mg.rds <- pmg(fm.rds, RDSpillovers, trend = TRUE)
dmg.rds <- update(mg.rds, . ~ lag(lny) + .)
screenreg(list('Static MG' = mg.rds, 'Dynamic MG'= dmg.rds), digits = 3)
if (requireNamespace("msm")){
library("msm")
b.lr <- coef(dmg.rds)["lnrd"]/(1 - coef(dmg.rds)["lag(lny)"])
SEb.lr <- deltamethod(~ x5 / (1 - x2),
mean = coef(dmg.rds), cov = vcov(dmg.rds))
z.lr <- b.lr / SEb.lr
pval.lr <- 2 * pnorm(abs(z.lr), lower.tail = FALSE)
lr.lnrd <- matrix(c(b.lr, SEb.lr, z.lr, pval.lr), nrow=1)
dimnames(lr.lnrd) <- list("lnrd (long run)", c("Est.", "SE", "z", "p.val"))
round(lr.lnrd, 3)
}
}
#### Example 9-4
## ------------------------------------------------------------------------
housep.np <- pvcm(log(price) ~ log(income), data = HousePricesUS, model = "within")
housep.pool <- plm(log(price) ~ log(income), data = HousePricesUS, model = "pooling")
housep.within <- plm(log(price) ~ log(income), data = HousePricesUS, model = "within")
d <- data.frame(x = c(coef(housep.np)[[1]], coef(housep.np)[[2]]),
coef = rep(c("intercept", "log(income)"),
each = nrow(coef(housep.np))))
if (requireNamespace("ggplot2")){
library("ggplot2")
ggplot(d, aes(x)) + geom_histogram(col = "black", fill = "white", bins = 8) +
facet_wrap(~ coef, scales = "free") + xlab("") + ylab("")
}
## ------------------------------------------------------------------------
summary(housep.np)
## ------------------------------------------------------------------------
pooltest(housep.pool, housep.np)
pooltest(housep.within, housep.np)
#### Example 9-5
## ------------------------------------------------------------------------
library("texreg")
cmgmod <- pmg(log(price) ~ log(income), data = HousePricesUS, model = "cmg")
screenreg(list(mg = mgmod, ccemg = cmgmod), digits = 3)
#### Example 9-6
## ------------------------------------------------------------------------
ccemgmod <- pcce(log(price) ~ log(income), data=HousePricesUS, model="mg")
summary(ccemgmod)
## ------------------------------------------------------------------------
ccepmod <- pcce(log(price) ~ log(income), data=HousePricesUS, model="p")
summary(ccepmod)
#### Example 9-8
## ------------------------------------------------------------------------
data("HousePricesUS", package = "pder")
price <- pdata.frame(HousePricesUS)$price
purtest(log(price), test = "levinlin", lags = 2, exo = "trend")
purtest(log(price), test = "madwu", lags = 2, exo = "trend")
purtest(log(price), test = "ips", lags = 2, exo = "trend")
#### Example 9-9
## ------------------------------------------------------------------------
tab5a <- matrix(NA, ncol = 4, nrow = 2)
tab5b <- matrix(NA, ncol = 4, nrow = 2)
for(i in 1:4) {
mymod <- pmg(diff(log(income)) ~ lag(log(income)) +
lag(diff(log(income)), 1:i),
data = HousePricesUS,
model = "mg", trend = TRUE)
tab5a[1, i] <- pcdtest(mymod, test = "rho")$statistic
tab5b[1, i] <- pcdtest(mymod, test = "cd")$statistic
}
for(i in 1:4) {
mymod <- pmg(diff(log(price)) ~ lag(log(price)) +
lag(diff(log(price)), 1:i),
data=HousePricesUS,
model="mg", trend = TRUE)
tab5a[2, i] <- pcdtest(mymod, test = "rho")$statistic
tab5b[2, i] <- pcdtest(mymod, test = "cd")$statistic
}
tab5a <- round(tab5a, 3)
tab5b <- round(tab5b, 2)
dimnames(tab5a) <- list(c("income", "price"),
paste("ADF(", 1:4, ")", sep=""))
dimnames(tab5b) <- dimnames(tab5a)
tab5a
tab5b
## ------------------------------------------------------------------------
php <- pdata.frame(HousePricesUS)
cipstest(log(php$price), type = "drift")
cipstest(diff(log(php$price)), type = "none")
## ------------------------------------------------------------------------
cipstest(resid(ccemgmod), type="none")
cipstest(resid(ccepmod), type="none")
#### Example 10-2
## ------------------------------------------------------------------------
data("usaw49", package="pder")
library("plm")
php <- pdata.frame(HousePricesUS)
pcdtest(php$price, w = usaw49)
## ------------------------------------------------------------------------
if (requireNamespace("splm")){
library("splm")
rwtest(php$price, w = usaw49, replications = 999)
}
## ------------------------------------------------------------------------
mgmod <- pmg(log(price) ~ log(income), data = HousePricesUS)
ccemgmod <- pmg(log(price) ~ log(income), data = HousePricesUS, model = "cmg")
pcdtest(resid(ccemgmod), w = usaw49)
rwtest(resid(mgmod), w = usaw49, replications = 999)
## End(Not run)
Income and Migration, Household Data
Description
yearly observations of 317 households from 2000 to 2006
number of observations : 2219
number of time-series : 7
country : Indonesia
package : limdeppanel
JEL codes: F22, J43, O13, O15, Q11, Q12, R23
Chapter : 08
Usage
data(IncomeMigrationH)
Format
A dataframe containing:
- household
household index
- year
the year
- migration
a dummy indicating whether a household has any migrant departing in year t+1
- price
rice price shock
- rain
rain shock
- land
landholdings (ha)
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Bazzi, Samuel (2017) “Wealth Heterogeneity and the Income Elasticity of Migration”, American Economic Journal, Applied Economics, 9(2), 219–255, doi: 10.1257/app.20150548 .
Income and Migration, Village Data
Description
3-yearly observations of 44674 villages from 2005 to 2008
number of observations : 89348
number of time-series : 2
country : Indonesia
package : panellimdep
JEL codes: F22, J43, O13, O15, Q11, Q12, R23
Chapter : 08
Usage
data(IncomeMigrationV)
Format
A dataframe containing:
- village
village index
- year
the year
- emigration
share of the emigrants in the total population
- district
the district of the village
- price
rice price shock
- rain
rain shock
- pareto
Pareto parameter of the landholdings distribution
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Bazzi, Samuel (2017) “Wealth Heterogeneity and the Income Elasticity of Migration”, American Economic Journal, Applied Economics, 9(2), 219–255, doi: 10.1257/app.20150548 .
JEL codes
Description
-
C13 : Estimation: General
-
TexasElectr
: Production of electricity in Texas -
Tileries
: Production of tileries in Egypt
-
-
C23 : Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
-
FinanceGrowth
: Financial institutions and growth -
IneqGrowth
: Inequality and growth -
TexasElectr
: Production of electricity in Texas -
Tileries
: Production of tileries in Egypt
-
-
C33 : Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
-
FinanceGrowth
: Financial institutions and growth -
IneqGrowth
: Inequality and growth
-
-
C51 : Model Construction and Estimation
-
ForeignTrade
: Foreign Trade of Developing countries -
HousePricesUS
: House Prices data -
RDPerfComp
: R and D performing companies -
RDSpillovers
: Research and development spillovers data -
TexasElectr
: Production of electricity in Texas -
Tileries
: Production of tileries in Egypt -
TradeEU
: Trade in the European Union
-
-
C78 : Bargaining Theory; Matching Theory
-
LateBudgets
: Late Budgets
-
-
C90 : Design of Experiments: General
-
Seniors
: Intergenerationals experiments
-
-
C92 : Design of Experiments: Laboratory, Group Behavior
-
CoordFailure
: How to overcome organization failure in organization
-
-
C93 : Field Experiments
-
Donors
: Dynamics of charitable giving
-
-
D02 : Institutions: Design, Formation, Operations, and Impact
-
GiantsShoulders
: Impact of institutions on cumulative research
-
-
D23 : Organizational Behavior; Transaction Costs; Property Rights
-
CoordFailure
: How to overcome organization failure in organization
-
-
D24 : Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
-
RDPerfComp
: R and D performing companies -
RDSpillovers
: Research and development spillovers data -
TexasElectr
: Production of electricity in Texas -
Tileries
: Production of tileries in Egypt -
TurkishBanks
: Turkish Banks
-
-
D64 : Altruism; Philanthropy; Intergenerational Transfers
-
Donors
: Dynamics of charitable giving
-
-
D72 : Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior
-
DemocracyIncome
: The relation between democraty and income -
DemocracyIncome25
: The relation between democraty and income -
LandReform
: Politics and land reforms in India -
LateBudgets
: Late Budgets -
Mafia
: Mafia and Public Spending -
Reelection
: Deficits and reelection -
RegIneq
: Interregional redistribution and inequalities -
ScrambleAfrica
: The long-run effects of the scramble for Africa
-
-
D74 : Conflict; Conflict Resolution; Alliances; Revolutions
-
ScrambleAfrica
: The long-run effects of the scramble for Africa
-
-
D82 : Asymmetric and Private Information; Mechanism Design
-
Donors
: Dynamics of charitable giving
-
-
D83 : Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
-
GiantsShoulders
: Impact of institutions on cumulative research
-
-
E24 : Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
-
CallBacks
: Callbacks to job applications
-
-
E32 : Business Fluctuations; Cycles
-
CallBacks
: Callbacks to job applications
-
-
E62 : Fiscal Policy
-
Mafia
: Mafia and Public Spending -
Reelection
: Deficits and reelection
-
-
F12 : Models of Trade with Imperfect Competition and Scale Economies; Fragmentation
-
TradeFDI
: Trade and Foreign Direct Investment in Germany and the United States
-
-
F14 : Empirical Studies of Trade
-
F17 : Trade: Forecasting and Simulation
-
ForeignTrade
: Foreign Trade of Developing countries
-
-
F21 : International Investment; Long-term Capital Movements
-
TradeFDI
: Trade and Foreign Direct Investment in Germany and the United States
-
-
F22 : International Migration
-
IncomeMigrationH
: Income and Migration, household data -
IncomeMigrationV
: Income and Migration, village data
-
-
F23 : Multinational Firms; International Business
-
TradeFDI
: Trade and Foreign Direct Investment in Germany and the United States
-
-
F32 : Current Account Adjustment; Short-term Capital Movements
-
TwinCrises
: Costs of currency and banking crises
-
-
F51 : International Conflicts; Negotiations; Sanctions
-
ScrambleAfrica
: The long-run effects of the scramble for Africa
-
-
G15 : International Financial Markets
-
TwinCrises
: Costs of currency and banking crises
-
-
G20 : Financial Institutions and Services: General
-
FinanceGrowth
: Financial institutions and growth
-
-
G21 : Banks; Depository Institutions; Micro Finance Institutions; Mortgages
-
TurkishBanks
: Turkish Banks -
TwinCrises
: Costs of currency and banking crises
-
-
H23 : Taxation and Subsidies: Externalities; Redistributive Effects; Environmental Taxes and Subsidies
-
RegIneq
: Interregional redistribution and inequalities
-
-
H41 : Public Goods
-
Donors
: Dynamics of charitable giving
-
-
H61 : National Budget; Budget Systems
-
LateBudgets
: Late Budgets
-
-
H62 : National Deficit; Surplus
-
Reelection
: Deficits and reelection
-
-
H71 : State and Local Taxation, Subsidies, and Revenue
-
H72 : State and Local Budget and Expenditures
-
LateBudgets
: Late Budgets
-
-
H73 : State and Local Government; Intergovernmental Relations: Interjurisdictional Differentials and Their Effects
-
RegIneq
: Interregional redistribution and inequalities
-
-
H77 : Intergovernmental Relations; Federalism; Secession
-
RegIneq
: Interregional redistribution and inequalities
-
-
I18 : Health: Government Policy; Regulation; Public Health
-
Dialysis
: Diffusion of haemodialysis technology
-
-
I23 : Higher Education; Research Institutions
-
GiantsShoulders
: Impact of institutions on cumulative research
-
-
J14 : Economics of the Elderly; Economics of the Handicapped; Non-labor Market Discrimination
-
J15 : Economics of Minorities, Races, Indigenous Peoples, and Immigrants; Non-labor Discrimination
-
ScrambleAfrica
: The long-run effects of the scramble for Africa
-
-
J22 : Time Allocation and Labor Supply
-
CallBacks
: Callbacks to job applications
-
-
J23 : Labor Demand
-
CallBacks
: Callbacks to job applications
-
-
J26 : Retirement; Retirement Policies
-
Seniors
: Intergenerationals experiments
-
-
J31 : Wage Level and Structure; Wage Differentials
-
TexasElectr
: Production of electricity in Texas -
Tileries
: Production of tileries in Egypt
-
-
J43 : Agricultural Labor Markets
-
IncomeMigrationH
: Income and Migration, household data -
IncomeMigrationV
: Income and Migration, village data
-
-
J64 : Unemployment: Models, Duration, Incidence, and Job Search
-
CallBacks
: Callbacks to job applications
-
-
K42 : Illegal Behavior and the Enforcement of Law
-
L31 : Nonprofit Institutions; NGOs; Social Entrepreneurship
-
Donors
: Dynamics of charitable giving
-
-
L33 : Comparison of Public and Private Enterprises and Nonprofit Institutions; Privatization; Contracting Out
-
TurkishBanks
: Turkish Banks
-
-
L82 : Entertainment; Media
-
MagazinePrices
: Magazine prices
-
-
M12 : Personnel Management; Executives; Executive Compensation
-
Seniors
: Intergenerationals experiments
-
-
M51 : Personnel Economics: Firm Employment Decisions; Promotions
-
Seniors
: Intergenerationals experiments
-
-
O13 : Economic Development: Agriculture; Natural Resources; Energy; Environment; Other Primary Products
-
IncomeMigrationH
: Income and Migration, household data -
IncomeMigrationV
: Income and Migration, village data -
LandReform
: Politics and land reforms in India
-
-
O15 : Economic Development: Human Resources; Human Development; Income Distribution; Migration
-
FinanceGrowth
: Financial institutions and growth -
IncomeMigrationH
: Income and Migration, household data -
IncomeMigrationV
: Income and Migration, village data -
IneqGrowth
: Inequality and growth -
ScrambleAfrica
: The long-run effects of the scramble for Africa
-
-
O16 : Economic Development: Financial Markets; Saving and Capital Investment; Corporate Finance and Governance
-
FinanceGrowth
: Financial institutions and growth -
IneqGrowth
: Inequality and growth -
TwinCrises
: Costs of currency and banking crises
-
-
O17 : Formal and Informal Sectors; Shadow Economy; Institutional Arrangements
-
LandReform
: Politics and land reforms in India -
ScrambleAfrica
: The long-run effects of the scramble for Africa
-
-
O19 : International Linkages to Development; Role of International Organizations
-
ForeignTrade
: Foreign Trade of Developing countries -
TwinCrises
: Costs of currency and banking crises
-
-
O30 : Innovation; Research and Development; Technological Change; Intellectual Property Rights: General
-
GiantsShoulders
: Impact of institutions on cumulative research
-
-
O31 : Innovation and Invention: Processes and Incentives
-
Dialysis
: Diffusion of haemodialysis technology
-
-
O32 : Management of Technological Innovation and R&D
-
RDSpillovers
: Research and development spillovers data
-
-
O33 : Technological Change: Choices and Consequences; Diffusion Processes
-
RDSpillovers
: Research and development spillovers data
-
-
O41 : One, Two, and Multisector Growth Models
-
Solow
: Growth model
-
-
O47 : Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
-
DemocracyIncome
: The relation between democraty and income -
DemocracyIncome25
: The relation between democraty and income -
FinanceGrowth
: Financial institutions and growth -
IneqGrowth
: Inequality and growth -
Reelection
: Deficits and reelection -
Solow
: Growth model -
TwinCrises
: Costs of currency and banking crises
-
-
Q11 : Agriculture: Aggregate Supply and Demand Analysis; Prices
-
IncomeMigrationH
: Income and Migration, household data -
IncomeMigrationV
: Income and Migration, village data
-
-
Q12 : Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
-
IncomeMigrationH
: Income and Migration, household data -
IncomeMigrationV
: Income and Migration, village data
-
-
Q15 : Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
-
LandReform
: Politics and land reforms in India
-
-
R12 : Size and Spatial Distributions of Regional Economic Activity
-
RegIneq
: Interregional redistribution and inequalities
-
-
R23 : Urban, Rural, Regional, Real Estate, and Transportation Economics: Regional Migration; Regional Labor Markets; Population; Neighborhood Characteristics
-
IncomeMigrationH
: Income and Migration, household data -
IncomeMigrationV
: Income and Migration, village data -
RegIneq
: Interregional redistribution and inequalities
-
-
R31 : Housing Supply and Markets
-
HousePricesUS
: House Prices data
-
-
R41 : Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
-
SeatBelt
: Seat belt usage and traffic fatalities
-
-
Z12 : Cultural Economics: Religion
-
Donors
: Dynamics of charitable giving
-
-
Z13 : Economic Sociology; Economic Anthropology; Language; Social and Economic Stratification
-
ScrambleAfrica
: The long-run effects of the scramble for Africa
-
Inequality and Growth
Description
5-yearly observations of 266 world from 1961 to 1995
number of observations : 1862
number of time-series : 7
country : country
package : panel
JEL codes: O47, O15, C23, C33, O16
Chapter : 07
Usage
data(IneqGrowth)
Format
A dataframe containing:
- country
country name
- period
the period
- growth
growth rate
- yssw
years of secondary schooling among women, lagged
- yssm
years of secondary schooling among men, lagged
- pinv
price level of investment, lagged
- lgdp
log initial gdp per capita
- gini
gini index
Source
http://www.cgdev.org/content/publications/detail/14256
References
Forbes, Kristin J. (2000) “A Reassessment of the Relationship Between Inequality and Growth”, American Economic Review, 90(4), 869-887, doi: 10.1257/aer.90.4.869 .
Roodman, David (2009) “A Note on the Theme of Two Many Instruments”, Oxford Bulletin of Economics An Statistics, 71(1), 135–158, doi: 10.1111/j.1468-0084.2008.00542.x .
Politics and Land Reforms in India
Description
yearly observations of 89 villages from 1974 to 2003
number of observations : 2670
number of time-series : 30
country : India
package : panellimdep
JEL codes: D72, O13, O17, Q15
Chapter : 08
Usage
data(LandReform)
Format
A dataframe containing:
- mouza
village id number
- year
Year
- district
District
- rplacul
ratio of patta land registered to operational land
- rpdrhh
ratio of pattadar households to total households (hh)
- rblacul
ratio of barga land registered to operational land
- rbgdrrghh
ratio of bargadar registered hh to total hh
- election
election year dummy
- preelect
preelection year dummy
- edwalfco
to complete
- erlesscu
interpolated landless hh, gi
- ermgcu
interpolated mg hh, gi
- ersmcu
interpolated sm hh, gi
- ermdcu
interpolated md hh, gi
- ercusmol
ratio of land below 5 acres cultivable NOT extrapolated
- ercubgol
ratio of land above 12.5 acres cultivable
- erillnb
interpolated ratio of illiterate non big hh
- erlow
interpolated ratio of low caste hh
- ratleft0
Left Front share in GP, == 0 for 1974
- dwalfco
Assembly average vote difference LF-INC, district
- inflat
Inflation in last 5 years in CPI for Agricultural Labourers
- smfempyv
Year variation in Employment in Small Scale Industrial Units registered with Dir
- incseats
INC seats / Total seats in Lok Sabha
- lfseats
Ratio of LF seats in parliament
- inflflag
Interaction between Inflation and ratleft lagged
- inclflag
Interaction between INC seats and ratleft lagged
- lflflag
Interaction between LF seats and ratleft lagged
- ratleft
Left Front share in GP, ==share of assembly seats for 1974
- infiw
to complete
- infumme
to complete
- infal
to complete
- gp
Gran Panchayat
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Bardhan, Pranab and Dilip Mookherjee (2010) “Determinants of Redistributive Politics: An Empirical Analysis of Land Reform in West Bengal, India”, American Economic Review, 100(4), 1572–1600, doi: 10.1257/aer.100.4.1572 .
Late Budgets
Description
yearly observations of 48 States from 1978 to 2007
number of observations : 1440
number of time-series : 30
country : United States
package : limdeppanel
JEL codes: C78, D72, H61, H72
Chapter : 08
Usage
data(LateBudgets)
Format
A dataframe containing:
- state
the state
- year
the year
- late
late budget ?
- dayslate
number of days late for the budget
- unempdiff
unemployment variation
- splitbranch
split branch
- splitleg
split legislature
- elecyear
election year
- endbalance
end of year balances in the general fund and stabilization fund
- demgov
democrat governor ?
- lameduck
lameduck
- govexp
number of years since the incumbent governor took office
- newgov
new governor ?
- pop
the polulation
- kids
percentage of population aged 5-17
- elderly
percentage of population aged 65 or older
- nocarry
does the state law does not allow a budget deficit to be carried over to the next fiscal year ?
- supmaj
is a super majority required to pass each budget ?
- fulltimeleg
full time legislature ?
- shutdown
shutdown provision ?
- black
percentage of blacks
- graduate
percentage of graduates
- censusresp
census response rate
- fiveyear
five year dummies, one of '93-97', '98-02', '03-07'
- deadline
is there a deadline ? one of 'none', 'soft' and 'hard'
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Andersen, Asger Lau; Lassen, David Dreyer and Lasse Holboll Westh Nielsen (2012) “Late Budgets”, American Economic Journal, Economic Policy, 4(4), 1-40, doi: 10.1257/pol.4.4.1 .
Examples
#### Example 8-4
## ------------------------------------------------------------------------
data("LateBudgets", package = "pder")
library("plm")
LateBudgets$dayslatepos <- pmax(LateBudgets$dayslate, 0)
LateBudgets$divgov <- with(LateBudgets,
factor(splitbranch == "yes" |
splitleg == "yes",
labels = c("no", "yes")))
LateBudgets$unemprise <- pmax(LateBudgets$unempdiff, 0)
LateBudgets$unempfall <- - pmin(LateBudgets$unempdiff, 0)
form <- dayslatepos ~ unemprise + unempfall + divgov + elecyear +
pop + fulltimeleg + shutdown + censusresp + endbalance + kids +
elderly + demgov + lameduck + newgov + govexp + nocarry +
supmaj + black + graduate
## ------------------------------------------------------------------------
FEtobit <- pldv(form, LateBudgets)
summary(FEtobit)
Mafia and Public Spending
Description
yearly observations of 95 provinces from 1986 to 1999
number of observations : 1330
number of time-series : 14
country : Italy
package : panelivreg
JEL codes: D72, E62, H71, K42
Chapter : 06
Usage
data(Mafia)
Format
A dataframe containing:
- province
the province (95)
- region
the region (19)
- year
the year
- pop
the population
- y
percentage growth of real per-capita value added
- g
annual variation of the per-capita public investment in infrastructure divided by lagged real per-capita value added
- cd
number of municipalities placed under the administration of external commissioners
- cds1
same as cd, provided that the official deccree is publisehd in the first semester of the year
- cds2
same as cd, provided that the average number of days betwen the dismissal of the city concil and the year end is less than 180
- u1
change in the log of per-capita employment
- u2
change in the log of per-capita hours of wage supplement provided by the unemployment insurance scheme
- mafiosi
first difference of the number of people reported by the police forces to the judicial authority because of mafia-type association
- extortion
first difference of the number of people reported by the police forces to the judicial authority because of extorsion
- corruption1
first difference of the number of people reported by the police forces to the judicial authority because of corruption
- corruption2
first difference of the number of crimes reported by the police forces to the judicial authority because of corruption
- murder
first difference of the number of people reported by the police forces to the judicial authority because of murder related to mafia activity
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Acconcia, Antonio; Corsetti, Giancarlo and Saviero Simonelli (2014) “Mafia and Public Spending: Evidence on the Fiscal Multimplier Form a Quasi-experiment”, American Economic Review, 104(7), 2189-2209, doi: 10.1257/aer.104.7.2185 .
Magazine Prices
Description
yearly observations of 38 magazines from 1940 to 1980
number of observations : 1262
number of time-series : 41
country : United States
package : binomialpanel
JEL codes: L82
Chapter : 08
Usage
data(MagazinePrices)
Format
A dataframe containing:
- year
the year
- magazine
the magazine name
- price
the price of the magazine in january
- change
has the price changed between january of the current year and january of the following year ?
- length
number of years since the previous price change
- cpi
gdp deflator index
- cuminf
cummulative change in inflation since the previous price change
- sales
single copy sales of magazines for magazine industry
- cumsales
cumulative change in magazine industry sales since previous price change
- included
is the observation included in the econometric analysis ?
- id
group index numbers used for the conditional logit estimation
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Willis, Jonathan L. (2006) “Magazine Prices Revisited”, Journal of Applied Econometrics, 21(3), 337-344, doi: 10.1002/jae.836 .
Cecchetti, Stephen G. (1986) “The Frequency of Price Adjustment, a Study of Newsstand Prices of Magazines”, Journal of Econometrics, 31, 255-274, doi: 10.1016/0304-4076(86)90061-8 .
Examples
#### Example 8-3
## ------------------------------------------------------------------------
data("MagazinePrices", package = "pder")
logitS <- glm(change ~ length + cuminf + cumsales, data = MagazinePrices,
subset = included == 1, family = binomial(link = 'logit'))
logitD <- glm(change ~ length + cuminf + cumsales + magazine,
data = MagazinePrices,
subset = included == 1, family = binomial(link = 'logit'))
if (requireNamespace("survival")){
library("survival")
logitC <- clogit(change ~ length + cuminf + cumsales + strata(id),
data = MagazinePrices,
subset = included == 1)
if (requireNamespace("texreg")){
library("texreg")
screenreg(list(logit = logitS, "FE logit" = logitD,
"cond. logit" = logitC), omit.coef = "magazine")
}
}
R and D Performing Companies
Description
yearly observations of 509 firms from 1982 to 1989
number of observations : 4072
number of time-series : 8
country : United States
package : panel
JEL codes: C51, D24
Chapter : 07
Usage
data(RDPerfComp)
Format
A dataframe containing:
- id
firm identifier
- year
year
- y
production in logs
- n
labor in logs
- k
capital in logs
Source
author's website https://www.nuffield.ox.ac.uk/users/bond/index.html
References
Blundell, Richard and Stephen Bond (2000) “GMM Estimation with Persistent Panel Data: An Application to Production Functions”, Econometric Reviews, 19(3), 321-340, doi: 10.1080/07474930008800475 .
Research and Development Spillovers Data
Description
a cross-section of 119 industries from 1980 to 2005
country : world
package : panel
JEL codes: C51, D24, O32, O33
Chapter : 04, 05, 09
Usage
data(RDSpillovers)
Format
A dataframe containing:
- id
country-industry index
- year
year
- country
country
- sector
manufacturing sector as SIC 15-37, excluding SIC 23
- lny
log output
- lnl
log of labour input
- lnk
log of physical capital stock
- lnrd
log of RD capital stock
Source
author's web site https://sites.google.com/site/medevecon/home
References
Eberhardt, M.; Helmers, C. and H. Strauss (2013) “Do Spillovers Matter in Estimating Private Returns to R and D?”, The Review of Economics and Statistics, 95(2), 436–448, doi: 10.1162/REST_a_00272 .
Examples
#### Example 4-10
## ------------------------------------------------------------------------
## Not run:
data("RDSpillovers", package = "pder")
library("plm")
fm.rds <- lny ~ lnl + lnk + lnrd
## ------------------------------------------------------------------------
pcdtest(fm.rds, RDSpillovers)
## ------------------------------------------------------------------------
rds.2fe <- plm(fm.rds, RDSpillovers, model = "within", effect = "twoways")
pcdtest(rds.2fe)
## ------------------------------------------------------------------------
cbind("rho" = pcdtest(rds.2fe, test = "rho")$statistic,
"|rho|"= pcdtest(rds.2fe, test = "absrho")$statistic)
#### Example 5-10
## ------------------------------------------------------------------------
data("RDSpillovers", package = "pder")
pehs <- pdata.frame(RDSpillovers, index = c("id", "year"))
ehsfm <- lny ~ lnl + lnk + lnrd
phtest(ehsfm, pehs, method = "aux")
## ------------------------------------------------------------------------
phtest(ehsfm, pehs, method = "aux", vcov = vcovHC)
#### Example 5-15
## ------------------------------------------------------------------------
fm <- lny ~ lnl + lnk + lnrd
## ------------------------------------------------------------------------
if (requireNamespace("lmtest")){
library("lmtest")
gglsmodehs <- pggls(fm, RDSpillovers, model = "pooling")
coeftest(gglsmodehs)
feglsmodehs <- pggls(fm, RDSpillovers, model = "within")
coeftest(feglsmodehs)
phtest(gglsmodehs, feglsmodehs)
fdglsmodehs <- pggls(fm, RDSpillovers, model = "fd")
fee <- resid(feglsmodehs)
dbfee <- data.frame(fee=fee, id=attr(fee, "index")[[1]])
coeftest(plm(fee~lag(fee)+lag(fee,2), dbfee, model = "p", index="id"))
fde <- resid(fdglsmodehs)
dbfde <- data.frame(fde=fde, id=attr(fde, "index")[[1]])
coeftest(plm(fde~lag(fde)+lag(fde,2), dbfde, model = "p", index="id"))
coeftest(fdglsmodehs)
}
#### Example 9-7
## ------------------------------------------------------------------------
ccep.rds <- pcce(fm.rds, RDSpillovers, model="p")
if (requireNamespace("lmtest")){
library("lmtest")
ccep.tab <- cbind(coeftest(ccep.rds)[, 1:2],
coeftest(ccep.rds, vcov = vcovNW)[, 2],
coeftest(ccep.rds, vcov = vcovHC)[, 2])
dimnames(ccep.tab)[[2]][2:4] <- c("Nonparam.", "vcovNW", "vcovHC")
round(ccep.tab, 3)
}
## ------------------------------------------------------------------------
autoreg <- function(rho = 0.1, T = 100){
e <- rnorm(T+1)
for (t in 2:(T+1)) e[t] <- e[t]+rho*e[t-1]
e
}
set.seed(20)
f <- data.frame(time = rep(0:40, 2),
rho = rep(c(0.2, 1), each = 41),
y = c(autoreg(rho = 0.2, T = 40),
autoreg(rho = 1, T = 40)))
if (requireNamespace("ggplot2")){
library("ggplot2")
ggplot(f, aes(time, y)) + geom_line() + facet_wrap(~ rho) + xlab("") + ylab("")
autoreg <- function(rho = 0.1, T = 100){
e <- rnorm(T)
for (t in 2:(T)) e[t] <- e[t] + rho *e[t-1]
e
}
tstat <- function(rho = 0.1, T = 100){
y <- autoreg(rho, T)
x <- autoreg(rho, T)
z <- lm(y ~ x)
coef(z)[2] / sqrt(diag(vcov(z))[2])
}
result <- c()
R <- 1000
for (i in 1:R) result <- c(result, tstat(rho = 0.2, T = 40))
quantile(result, c(0.025, 0.975))
prop.table(table(abs(result) > 2))
result <- c()
R <- 1000
for (i in 1:R) result <- c(result, tstat(rho = 1, T = 40))
quantile(result, c(0.025, 0.975))
prop.table(table(abs(result) > 2))
R <- 1000
T <- 100
result <- c()
for (i in 1:R){
y <- autoreg(rho=1, T=100)
Dy <- y[2:T] - y[1:(T-1)]
Ly <- y[1:(T-1)]
z <- lm(Dy ~ Ly)
result <- c(result, coef(z)[2] / sqrt(diag(vcov(z))[2]))
}
ggplot(data.frame(x = result), aes(x = x)) +
geom_histogram(fill = "white", col = "black",
bins = 20, aes(y = ..density..)) +
stat_function(fun = dnorm) + xlab("") + ylab("")
prop.table(table(result < -1.64))
}
## End(Not run)
Deficits and Reelection
Description
yearly observations of 75 countries from 1960 to 2003
number of observations : 439
number of time-series : 16
country : world
package : panelbinomial
JEL codes: D72, E62, H62, O47
Chapter : 08
Usage
data(Reelection)
Format
A dataframe containing:
- country
the country
- year
the year
- narrow
TRUE
if the observation belongs to the narrow data set- reelect
one if the incumbent was reelected and zero otherwise
- ddefterm
the change in the ratio of the government surplus to gdp in the two years preeceding the election year, relative to the two previous years
- ddefey
the change in the government surplus ratio to gdpin the election year, compared to the previous year
- gdppc
the average growth rate of real per capita gdp during the leader's current term
- dev
one for developped countries, 0 otherwise
- nd
one for a new democratic country, 0 otherwise
- maj
one for majoritarian electoral system, 0 otherwise
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Adi Brender and Allan Drazen (2008) “How Do Budget Deficits and Economic Growth Affect Reelection Prospects? Evidence From a Large Panel of Countries”, American Economic Review, 98(5), 2203-2220, doi: 10.1257/aer.98.5.2203 .
Examples
#### Example 8-1
## ------------------------------------------------------------------------
## Not run:
library("plm")
data("Reelection", package = "pder")
## ------------------------------------------------------------------------
elect.l <- glm(reelect ~ ddefterm + ddefey + gdppc + dev + nd + maj,
data = Reelection, family = "binomial", subset = narrow)
l2 <- update(elect.l, family = binomial)
l3 <- update(elect.l, family = binomial())
l4 <- update(elect.l, family = binomial(link = 'logit'))
## ------------------------------------------------------------------------
elect.p <- update(elect.l, family = binomial(link = 'probit'))
## ------------------------------------------------------------------------
if (requireNamespace("pglm")){
library("pglm")
elect.pl <- pglm(reelect ~ ddefterm + ddefey + gdppc + dev + nd + maj,
Reelection, family = binomial(link = 'logit'),
subset = narrow)
elect.pp <- pglm(reelect ~ ddefterm + ddefey + gdppc + dev + nd + maj,
Reelection, family = binomial(link = 'probit'),
subset = narrow)
}
## End(Not run)
Interregional Redistribution and Inequalities
Description
yearly observations of 17 countries from 1982 to 1999
number of observations : 102
number of time-series : 6
country : oecd
package : panel
JEL codes: D72, H23, H71, H73, H77, R12, R23
Chapter : 07
Usage
data(RegIneq)
Format
A dataframe containing:
- country
the country
- period
the period
- regineq
coefficient of variatio of regional gdp per capita
- gdppc
real gross domestic product per capita
- pop
total population
- popgini
gini coefficient of regional population size
- urban
share of urban living population
- social
total government social expenditures as share of gdp
- unempl
unemployment rate
- dec
sub-national expenditures as share of total government expenditures
- transrev
grants received by national and sub-national governments from other levels of government as share of total government revenues
- transaut
sub-national non autonomous revenues as share of total government revenues
Source
Review of Economic Studies' web site https://academic.oup.com/restud
References
Anke S. Kessler and Nico A. Hansen and Christian Lessmann (2011) “Interregional Redistribution and Mobility in Federations: a Positive Approach”, Review of Economic Studies, 78(4), 1345-1378, doi: 10.1093/restud/rdr003 .
The Long-run Effects of the Scramble for Africa
Description
a pseudo-panel of 49 countries
number of observations : 1212
number of individual observations : 2-112
country : Africa
package : countpanel
JEL codes: D72, D74, F51, J15, O15, O17, Z13
Chapter : 08
Usage
data(ScrambleAfrica)
Format
A dataframe containing:
- country
country code
- group
ethnic group name
- conflicts
number of conflicts
- split
dummy for partitioned ethnic area
- spillover
spillover index, the fraction of adjacent groups in the same country that are partitioned
- region
the region
- pop
population according to the first post-independance census
- area
land area
- lake
lakes dummy
- river
rivers dummy
- capital
dummy if a capital city falls in the homeland of an ethnic group
- borderdist
distance of the centroid of the area from the national border
- capdist
distance of the centroid of the area from the capital
- seadist
distance of the centroid of the area from the sea coast
- coastal
dummy for areas that are by the sea coast
- meanelev
mean elevation
- agriculture
index of land suitability for agriculture
- diamond
diamond mine indicator
- malaria
malaria stability index
- petroleum
oil field indicator
- island
island dummy
- city1400
dummy for areas with major city in 1400
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Michalopoulos, Stelios and Elias Papaioannou (2016) “The Long-run Effects of the Scramble for Africa”, American Economic Review, 106(7), 1802–1848, doi: 10.1257/aer.20131311 .
Seat Belt Usage and Traffic Fatalities
Description
yearly observations of 51 states from 1983 to 1997
number of observations : 765
number of time-series : 15
country : United States
package : panel
JEL codes: R41, K42
Chapter : 06
Usage
data(SeatBelt)
Format
A dataframe containing:
- state
the state code
- year
the year
- farsocc
the number of traffic fatalities of drivers and passengers (of any seating position) of a motor vehicule in transport
- farsnocc
the number of traffic fatalities of pedestrians and bicyclists
- usage
rate of seat belt usage
- percapin
median income in current US dollars
- unemp
unemployment rate
- meanage
mean age
- precentb
the percentage of african-americans in the state population
- precenth
the percentage of people of hispanic origin in the state population
- densurb
traffic density urban ; registered vehicules per unit length of urban roads in miles
- densrur
traffic density rural ; registered vehicules per unit length of urban roads in miles
- viopcap
number of violent crimes (homicide, rape and robbery) per capita
- proppcap
number of preperty rimes (burglary, larceny and auto theft) per capita
- vmtrural
vehicule miles traveled on rural roads
- vmturban
vehicule miles traveled on urban roads
- fueltax
fuel tax (in curent cents)
- lim65
65 miles per hour speed limit (55 mph is the base category)
- lim70p
70 miles per hour or above speed limit (55 mph is the base caegory)
- mlda21
a dummy variable that is equal to 1 for a minimum for a minimum legal drinking age of 21 years (18 years is the base category)
- bac08
a dummy variable that is equal to 1 foe a maximum of 0.08 blood alcohol content (0.1 is the base category)
- ds
a dummy equal to 1 for the periods in which the state had a secondary-enforcement mandatory seat belt law, or a primary-enforcement law that preceded by a secondary-enforcement law (no seat belt law is the base category)
- dp
a dummy variable eqal to 1 for the periods in which the state had a primary-enforcement mandatory seat belt law that was not preceded by a secondary-enforcement law (no seat belt is the base category)
- dsp
a dummy variable equal to 1 for the periods in which the state had a primary-enforcement mandatory seat belt law that was preceded by a secondary enforcement law (no seat belt law is the base category
Source
author's website https://leinav.people.stanford.edu
References
Cohen, Alma and Liran Einav (2003) “The Effects of Mandatory Seat Belt Laws on Driving Behavior and Traffic Fatalities”, The Review of Economics and Statistics, 85(4), 828-843, doi: 10.2139/ssrn.293582 .
Examples
#### Example 6-1
## ------------------------------------------------------------------------
## Not run:
library("plm")
## ------------------------------------------------------------------------
y ~ x1 + x2 + x3 | x1 + x3 + z
y ~ x1 + x2 + x3 | . - x2 + z
## ------------------------------------------------------------------------
data("SeatBelt", package = "pder")
SeatBelt$occfat <- with(SeatBelt, log(farsocc / (vmtrural + vmturban)))
ols <- plm(occfat ~ log(usage) + log(percapin) + log(unemp) + log(meanage) +
log(precentb) + log(precenth)+ log(densrur) +
log(densurb) + log(viopcap) + log(proppcap) +
log(vmtrural) + log(vmturban) + log(fueltax) +
lim65 + lim70p + mlda21 + bac08, SeatBelt,
effect = "time")
fe <- update(ols, effect = "twoways")
ivfe <- update(fe, . ~ . | . - log(usage) + ds + dp +dsp)
rbind(ols = coef(summary(ols))[1,],
fe = coef(summary(fe))[1, ],
w2sls = coef(summary(ivfe))[1, ])
## ------------------------------------------------------------------------
SeatBelt$noccfat <- with(SeatBelt, log(farsnocc / (vmtrural + vmturban)))
nivfe <- update(ivfe, noccfat ~ . | .)
coef(summary(nivfe))[1, ]
## End(Not run)
Intergenerationals Experiments
Description
a pseudo-panel of 159 Individuals
number of observations : 2703
number of individual observations : 17
country : France
package : panellimdep
JEL codes: C90, J14, J26, M12, M51
Chapter : 08
Usage
data(Seniors)
Format
A dataframe containing:
- id
individual number of each subject
- period
from 1 to 17
- session
from 1 to 12
- firm
1 if working subject, 0 otherwise
- firmx
1 if the firm is X, 0 if the firm is Y
- order
1 if the treatment with no information on the generation of the group is played first in the Public Good game, 0 otherwise
- gender
1 if male subject, 0 if female subject
- manager
1 if the subject is a manager, 0 otherwise
- student
1 if the subject is a student, 0 otherwise
- retir
1 if retiree, 0 otherwise
- senior
1 if the subject is a senior, 0 otherwise
- seniord
1 if the subject reports s/he is a senior, 0 if junior
- workingsenior
1 if the subject is a working senior, 0 otherwise
- workingjunior
1 if the subject is a working junior, 0 otherwise
- information
1 if information is given on the generation composition of the group, 0 otherwise
- nbseniors
number of seniors in the group, excluding the subject
- homogend
1 if the group is homogenous in terms of declared generation, 0 otherwise
- homodgenck
1 if the group is homogenous in terms of declared generation and this is common information, 0 otherwise
- contribution
amount of the contribution to the public good (from 0 to 20)
- pot
amount of the public good (from 0 to 60)
- potlag
amount of the public good in the previous period (from 0 to 60)
- potimean
amount of the public good, excluding the subject's contribution (from 0 to 40)
- potimeanlag
amount of the public good in the previous period, excluding the subject's contribution (from 0 to 40)
- payoffpggame
payoff in the public good game
- desirnbseniors
desired number of seniors co-participants in the Selection treatment (from 0 to 2)
- invest
amount invested in the risky lotery
- payoffriskgame
payoff in the investment game
- letters
1 if letters are A M F U R I P , 0 if they are OATFNED
- idicompet
individual number of the co-participant in the Task game
- seniordopponent
1 if the co-participant in the Task game reports s/he is a senior, 0 otherwise
- seniori
1 if the co-participant in the Task game is a senior
- option
1 if the subject has chosen the tournament, 0 otherwise
- option0
1 if the co-participant has chosen the tournament, 0 otherwise
- twoperstour
1 if both participants have chosen the tournament, 0 otherwise
- beliefself
number of words the subject believes s/he will create
- beliefseniors
number of words the subject believes the seniors will create on average
- beliefjuniors
number of words the subject believes the juniors will create on average
- beliefsmatchs
number of words the subject believes the seniors will create on average when matched with a senior
- beliefjmatchj
number of words the subject believes the juniors will create on average when matched with a junior
- relatabil
1 if the subject believes s/he can create more words than the generation of his/her co-participant, 0 otherwise
- performance
number of words actually created
- perfi
number of words actually created by the co-participant
- payoffcompetitiongame
payoff in the Task game
- expesenck
1 if the subject has been informed that s/he was interacting with seniors in the Public Good game, 0 otherwise
- potlagsenior
Amount of the pot in the previous period * the subject is a senior
- heterogend
1 if the group mixes the two generations, 0 otherwise
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Charness, Gary and Marie-Claire Villeval (2009) “Cooperation and Competition in Intergenerational Experiments in the Field and the Laboratory”, American Economic Review, 99(3), 956–978, doi: 10.1257/aer.99.3.956 .
Growth Model
Description
yearly observations of 97 countries from 1960 to 1985
number of observations : 576
number of time-series : 6
country : world
package : panel
JEL codes: O47, O41
Chapter : 07
Usage
data(Solow)
Format
A dataframe containing:
- id
country id
- year
year
- lgdp
log of gdp per capita
- lsrate
log of the saving rate, approximated by the investement rate
- lpopg
log of population growth + 0.05 (which is an approximation of the sum of the rate of labor-augmenting technological progress and of the rate of depreciation of physical capital)
Source
author's website https://www.nuffield.ox.ac.uk/users/bond/index.html
References
Caselli, Francesco; Esquivel, Gerardo and Fernando Lefort (1996) “Reopening the Convergence Debate: a New Look at Cross-country Growth Empirics”, Journal of Economic Growth, 1, 363-389, doi: 10.1007/BF00141044 .
Bond, Stephen; Hoeffler, Anke and Johnatan Temple (2001) “GMM Estimation of Empirical Growth Model”, CEPR Discussion Paper, 3048, 1-33.
Production of Electricity in Texas
Description
yearly observations of 10 firms from 1966 to 1983
number of observations : 180
number of time-series : 18
country : Texas
package : productionpanel
JEL codes: D24, C13, C51, C23, J31
Chapter : 02, 03
Usage
data(TexasElectr)
Format
A dataframe containing:
- id
the firm identifier
- year
the year, from 1966 to 1983
- output
output
- pfuel
price of fuel
- plab
price of labor
- pcap
price of capital
- expfuel
expense in fuel
- explab
expense in labor
- expcap
expense in capital
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Kumbhakar SC (1996) “Estimation of Cost Efficiency with Heteroscedasticity: An Application to Electric Utilities”, Journal of the Royal Statistical Society, Series D, 45, 319–335.
Horrace and Schmidt (1996) “Confidence Statements for Efficiency Estimates From Stochastic Frontier Models”, Journal of Productity Analysis, 7, 257–282, doi: 10.1007/BF00157044 .
Horrace and Schmidt (2012) “Multiple Comparisons with the Best, with Economic Applications”, Journal of Applied Econometrics, 15(1), 1–26, doi: 10.1002/(SICI)1099-1255(200001/02)15:1<1::AID-JAE551>3.0.CO;2-Y .
Examples
#### Example 2-6
## ------------------------------------------------------------------------
data("TexasElectr", package = "pder")
library("plm")
TexasElectr$cost <- with(TexasElectr, explab + expfuel + expcap)
TE <- pdata.frame(TexasElectr)
summary(log(TE$output))
ercomp(log(cost) ~ log(output), TE)
models <- c("within", "random", "pooling", "between")
sapply(models, function(x)
coef(plm(log(cost) ~ log(output), TE, model = x))["log(output)"])
#### Example 3-2
## ------------------------------------------------------------------------
data("TexasElectr", package = "pder")
if (requireNamespace("dplyr")){
library("dplyr")
TexasElectr <- mutate(TexasElectr,
pf = log(pfuel / mean(pfuel)),
pl = log(plab / mean(plab)) - pf,
pk = log(pcap / mean(pcap)) - pf)
## ------------------------------------------------------------------------
TexasElectr <- mutate(TexasElectr, q = log(output / mean(output)))
## ------------------------------------------------------------------------
TexasElectr <- mutate(TexasElectr,
C = expfuel + explab + expcap,
sl = explab / C,
sk = expcap / C,
C = log(C / mean(C)) - pf)
## ------------------------------------------------------------------------
TexasElectr <- mutate(TexasElectr,
pll = 1/2 * pl ^ 2,
plk = pl * pk,
pkk = 1/2 * pk ^ 2,
qq = 1/2 * q ^ 2)
## ------------------------------------------------------------------------
cost <- C ~ pl + pk + q + pll + plk + pkk + qq
shlab <- sl ~ pl + pk
shcap <- sk ~ pl + pk
## ------------------------------------------------------------------------
R <- matrix(0, nrow = 6, ncol = 14)
R[1, 2] <- R[2, 3] <- R[3, 5] <- R[4, 6] <- R[5, 6] <- R[6, 7] <- 1
R[1, 9] <- R[2, 12] <- R[3, 10] <- R[4, 11] <- R[5, 13] <- R[6, 14] <- -1
## ------------------------------------------------------------------------
z <- plm(list(cost = C ~ pl + pk + q + pll + plk + pkk + qq,
shlab = sl ~ pl + pk,
shcap = sk ~ pl + pk),
TexasElectr, model = "random",
restrict.matrix = R)
summary(z)
}
Production of Tileries in Egypt
Description
weeklyly observations of 25 firms from 1982 to 1983
number of observations : 483
number of time-series : 22
country : Egypt
package : panelproduction
JEL codes: D24, C13, C51, C23, J31
Chapter : 01, 03
Usage
data(Tileries)
Format
A dataframe containing:
- id
firm id
- week
week (3 weeks aggregated)
- area
one of
"fayoum"
and"kalyubiya"
- output
output
- labor
labor hours
- machine
machine hours
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Horrace and Schmidt (1996) “Confidence Statements for Efficiency Estimates From Stochastic Frontier Models”, Journal of Productity Analysis, 7, 257–282, doi: 10.1007/BF00157044 .
Horrace and Schmidt (2012) “Multiple Comparisons with the Best, with Economic Applications”, Journal of Applied Econometrics, 15(1), 1–26, doi: 10.1002/(SICI)1099-1255(200001/02)15:1<1::AID-JAE551>3.0.CO;2-Y .
Seale J.L. (1990) “Estimating Stochastic Frontier Systems with Unbalanced Panel Data: the Case of Floor Tile Manufactories in Egypt”, Journal of Applied Econometrics, 5, 59–79, doi: 10.1002/jae.3950050105 .
Examples
#### Example 1-2
## ------------------------------------------------------------------------
data("Tileries", package = "pder")
library("plm")
coef(summary(plm(log(output) ~ log(labor) + machine, data = Tileries,
subset = area == "fayoum")))
## ------------------------------------------------------------------------
coef(summary(plm(log(output) ~ log(labor) + machine, data = Tileries,
model = "pooling", subset = area == "fayoum")))
#### Example 1-5
## ------------------------------------------------------------------------
data("Tileries", package = "pder")
til.fm <- log(output) ~ log(labor) + log(machine)
lm.mod <- lm(til.fm, data = Tileries, subset = area == "fayoum")
## ------------------------------------------------------------------------
if (requireNamespace("car")){
library("car")
lht(lm.mod, "log(labor) + log(machine) = 1")
## ------------------------------------------------------------------------
library("car")
lht(lm.mod, "log(labor) + log(machine) = 1", vcov=vcovHC)
}
#### Example 1-6
## ------------------------------------------------------------------------
plm.mod <- plm(til.fm, data = Tileries, subset = area == "fayoum")
## ------------------------------------------------------------------------
if (requireNamespace("car")){
library("car")
lht(plm.mod, "log(labor) + log(machine) = 1", vcov = vcovHC)
}
#### Example 3-1
## ------------------------------------------------------------------------
library(plm)
data("Tileries", package = "pder")
head(Tileries, 3)
pdim(Tileries)
## ------------------------------------------------------------------------
Tileries <- pdata.frame(Tileries)
plm.within <- plm(log(output) ~ log(labor) + log(machine), Tileries)
y <- log(Tileries$output)
x1 <- log(Tileries$labor)
x2 <- log(Tileries$machine)
lm.within <- lm(I(y - Between(y)) ~ I(x1 - Between(x1)) + I(x2 - Between(x2)) - 1)
lm.lsdv <- lm(log(output) ~ log(labor) + log(machine) + factor(id), Tileries)
coef(lm.lsdv)[2:3]
coef(lm.within)
coef(plm.within)
## ------------------------------------------------------------------------
tile.r <- plm(log(output) ~ log(labor) + log(machine), Tileries, model = "random")
summary(tile.r)
## ------------------------------------------------------------------------
plm.within <- plm(log(output) ~ log(labor) + log(machine),
Tileries, effect = "twoways")
lm.lsdv <- lm(log(output) ~ log(labor) + log(machine) +
factor(id) + factor(week), Tileries)
y <- log(Tileries$output)
x1 <- log(Tileries$labor)
x2 <- log(Tileries$machine)
y <- y - Between(y, "individual") - Between(y, "time") + mean(y)
x1 <- x1 - Between(x1, "individual") - Between(x1, "time") + mean(x1)
x2 <- x2 - Between(x2, "individual") - Between(x2, "time") + mean(x2)
lm.within <- lm(y ~ x1 + x2 - 1)
coef(plm.within)
coef(lm.within)
coef(lm.lsdv)[2:3]
## ------------------------------------------------------------------------
wh <- plm(log(output) ~ log(labor) + log(machine), Tileries,
model = "random", random.method = "walhus",
effect = "twoways")
am <- update(wh, random.method = "amemiya")
sa <- update(wh, random.method = "swar")
ercomp(sa)
## ------------------------------------------------------------------------
re.models <- list(walhus = wh, amemiya = am, swar = sa)
sapply(re.models, function(x) sqrt(ercomp(x)$sigma2))
sapply(re.models, coef)
The Q Theory of Investment
Description
yearly observations of 188 firms from 1951 to 1985
number of observations : 6580
number of time-series : 35
country : United States
package : panel
Chapter : 02
Usage
data(TobinQ)
Format
A dataframe containing:
- cusip
compustat's identifying number
- year
year
- isic
sic industry classification
- ikb
investment divided by capital : broad definition
- ikn
investment divided by capital : narrow definition
- qb
Tobin's Q : broad definition
- qn
Tobin's Q : narrow definition
- kstock
capital stock
- ikicb
investment divided by capital with imperfect competition : broad definition
- ikicn
investment divided by capital with imperfect competition : narrow definition
- omphi
one minus phi (see the article p. 320)
- qicb
Tobin's Q with imperfect competition : broad definition
- qicn
Tobin's Q with imperfect competition : narrow definition
- sb
S (see equation 10 p. 320) : broad definition
- sn
S (see equation 10 p. 320) : narrow definition
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Schaller, Huntley (1990) “A Re-examination of the Q Theory of Investment Using U.S. Firm Data”, Journal of Applied Econometrics, 5(4), 309–325, doi: 10.1002/jae.3950050402 .
Examples
#### Example 2-1
## ------------------------------------------------------------------------
## Not run:
library("plm")
data("TobinQ", package = "pder")
## ------------------------------------------------------------------------
pTobinQ <- pdata.frame(TobinQ)
pTobinQa <- pdata.frame(TobinQ, index = 188)
pTobinQb <- pdata.frame(TobinQ, index = c('cusip'))
pTobinQc <- pdata.frame(TobinQ, index = c('cusip', 'year'))
## ------------------------------------------------------------------------
pdim(pTobinQ)
## ----results = 'hide'----------------------------------------------------
pdim(TobinQ, index = 'cusip')
pdim(TobinQ)
## ------------------------------------------------------------------------
head(index(pTobinQ))
## ------------------------------------------------------------------------
Qeq <- ikn ~ qn
Q.pooling <- plm(Qeq, pTobinQ, model = "pooling")
Q.within <- update(Q.pooling, model = "within")
Q.between <- update(Q.pooling, model = "between")
## ------------------------------------------------------------------------
Q.within
summary(Q.within)
## ------------------------------------------------------------------------
head(fixef(Q.within))
head(fixef(Q.within, type = "dfirst"))
head(fixef(Q.within, type = "dmean"))
## ------------------------------------------------------------------------
head(coef(lm(ikn ~ qn + factor(cusip), pTobinQ)))
#### Example 2-2
## ------------------------------------------------------------------------
Q.swar <- plm(Qeq, pTobinQ, model = "random", random.method = "swar")
Q.swar2 <- plm(Qeq, pTobinQ, model = "random",
random.models = c("within", "between"),
random.dfcor = c(2, 2))
summary(Q.swar)
## ------------------------------------------------------------------------
ercomp(Qeq, pTobinQ)
ercomp(Q.swar)
## ------------------------------------------------------------------------
Q.walhus <- update(Q.swar, random.method = "swar")
Q.amemiya <- update(Q.swar, random.method = "amemiya")
Q.nerlove <- update(Q.swar, random.method = "nerlove")
Q.models <- list(swar = Q.swar, walhus = Q.walhus,
amemiya = Q.amemiya, nerlove = Q.nerlove)
sapply(Q.models, function(x) ercomp(x)$theta)
sapply(Q.models, coef)
#### Example 2-3
## ------------------------------------------------------------------------
sapply(list(pooling = Q.pooling, within = Q.within,
between = Q.between, swar = Q.swar),
function(x) coef(summary(x))["qn", c("Estimate", "Std. Error")])
## ------------------------------------------------------------------------
summary(pTobinQ$qn)
## ------------------------------------------------------------------------
SxxW <- sum(Within(pTobinQ$qn) ^ 2)
SxxB <- sum((Between(pTobinQ$qn) - mean(pTobinQ$qn)) ^ 2)
SxxTot <- sum( (pTobinQ$qn - mean(pTobinQ$qn)) ^ 2)
pondW <- SxxW / SxxTot
pondW
pondW * coef(Q.within)[["qn"]] +
(1 - pondW) * coef(Q.between)[["qn"]]
## ------------------------------------------------------------------------
T <- 35
N <- 188
smxt2 <- deviance(Q.between) * T / (N - 2)
sidios2 <- deviance(Q.within) / (N * (T - 1) - 1)
phi <- sqrt(sidios2 / smxt2)
## ------------------------------------------------------------------------
pondW <- SxxW / (SxxW + phi^2 * SxxB)
pondW
pondW * coef(Q.within)[["qn"]] +
(1 - pondW) * coef(Q.between)[["qn"]]
#### Example 2-8
## ------------------------------------------------------------------------
Q.models2 <- lapply(Q.models, function(x) update(x, effect = "twoways"))
sapply(Q.models2, function(x) sqrt(ercomp(x)$sigma2))
sapply(Q.models2, function(x) ercomp(x)$theta)
## End(Not run)
Trade in the European Union
Description
yearly observations of 91 pairs of countries from 1960 to 2001
number of observations : 3822
number of time-series : 42
country : Europe
package : gravity
JEL codes: C51, F14
Chapter : 06
Usage
data(TradeEU)
Format
A dataframe containing:
- year
the year
- pair
a pair of countries
- trade
the sum of logged exports and imports, bilateral trade flow
- gdp
the sum of the logged real GDPs
- sim
a measure of similarity between two trading countries;
- rlf
a measure of relative factor endowments;
- rer
the logged bilateral real exchange rate;
- cee
a dummy equal to 1 when both belong to European Community;
- emu
a dummy equal to 1 when both adopt the common currency;
- dist
the geographical distance between capital cities;
- bor
a dummy equal to 1 when the trading partners share a border;
- lan
a dummy equal to 1 when both speak the same language;
- rert
the logarithm of real exchange rates between the European currencies and the U.S. dollar;
- ftrade
the time specific common factors (individual means) of the variables trade
- fgdp
the time specific common factors (individual means) of the variables gdp
- fsim
the time specific common factors (individual means) of the variables sim
- frlf
the time specific common factors (individual means) of the variables rlf
- frer
the time specific common factors (individual means) of the variables rer
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Serlenga, Laura and Yongcheol Shin (2007) “Gravity Models of Intra-eu Trade: Application of the Ccep-ht Estimation in Heterogenous Panels with Unobserved Common Time-specific Factors”, Journal of Applied Econometrics, 22, 361–381, doi: 10.1002/jae.944 .
Examples
#### Example 6-3
## ------------------------------------------------------------------------
## Not run:
data("TradeEU", package = "pder")
library("plm")
## ------------------------------------------------------------------------
ols <- plm(trade ~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan, TradeEU,
model = "pooling", index = c("pair", "year"))
fe <- update(ols, model = "within")
fe
## ------------------------------------------------------------------------
re <- update(fe, model = "random")
re
## ------------------------------------------------------------------------
phtest(re, fe)
## ----results='hide'------------------------------------------------------
ht1 <- plm(trade ~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan |
rer + dist + bor | gdp + rlf + sim + cee + emu + lan ,
data = TradeEU, model = "random", index = c("pair", "year"),
inst.method = "baltagi", random.method = "ht")
ht2 <- update(ht1, trade ~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan |
rer + gdp + rlf + dist + bor| sim + cee + emu + lan)
## ------------------------------------------------------------------------
phtest(ht1, fe)
phtest(ht2, fe)
## ------------------------------------------------------------------------
ht2am <- update(ht2, inst.method = "am")
## ------------------------------------------------------------------------
phtest(ht2am, fe)
## End(Not run)
Trade and Foreign Direct Investment in Germany and the United States
Description
yearly observations of 490 combinations of countries / industries from 1989 to 1999
number of observations : 3860
number of time-series : 11
country : Germany and United States
package : gravity
JEL codes: F12, F14, F21, F23
Chapter : 06
Usage
data(TradeFDI)
Format
A dataframe containing:
- id
id
- year
time period
- country
country name
- indusid
industry code
- importid
importer code
- lrex
log real bilateral exports
- lrfdi
log real bilateral outward stocks of FDI
- lgdt
log sum of bilateral real GDP
- lsimi
log (1-[exporter GDP/(exporter+importer GDP)]^2- [exporter GDP/(exporter+importer GDP)]^2)
- lrk
log (real capital stock of exporter/real capital stock of importer)
- lrh
log (secondary school enrolment of exporter/secondary school enrolment of importer)
- lrl
log (labor force of exporter/labor force of importer)
- ldist
log bilateral distance between exporter and importer
- lkldist
(lrk-lrl) * ldist
- lkgdt
abs(lrk)*lgdt
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Peter Egger and Michael Pfaffermayr (2004) “Distance, Trade, and Fdi: A Hausman-taylor Sur Approach”, Journal of Applied Econometrics, 19(2), 227–246, doi: 10.1002/jae.721 .
Turkish Banks
Description
yearly observations of 53 banks from 1990 to 2000
number of observations : 583
number of time-series : 11
country : Turkey
package : productionpanel
JEL codes: D24, G21, L33
Chapter : 02
Usage
data(TurkishBanks)
Format
A dataframe containing:
- id
bank id
- year
the years
- type
one of
"conventional"
and"islamic"
- pl
price of labor
- pf
price of borrowed funds
- pk
price of physical capital
- output
output, total loans
- cost
total cost
- empexp
employee expenses
- nbemp
number of employees
- faexp
assets expenses
- fa
fixed assets
- intexp
total interest expenses (interest on deposits and non-deposit funds + other interest expenses),
- bfunds
borrowed funds (deposits + non-deposit funds)
- dep
deposits
- nondep
non-deposits
- npl
non performing loans
- ec
equity capital
- quality
quality index
- rindex
risk index
- ta
total assets
- ts
total securities (only for conventional banks)
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Mahmoud A. El-Gamal and Hulusi Inanoglu (2005) “Inefficiency and Heterogeneity in Turkish Banking: 1990-2000”, Journal of Applied Econometrics, 20(5), 641–664, doi: 10.1002/jae.835 .
Examples
#### Example 2-5
## ------------------------------------------------------------------------
data("TurkishBanks", package = "pder")
library("plm")
TurkishBanks <- na.omit(TurkishBanks)
TB <- pdata.frame(TurkishBanks)
summary(log(TB$output))
ercomp(log(cost) ~ log(output), TB)
models <- c("within", "random", "pooling", "between")
sapply(models, function(x)
coef(plm(log(cost) ~ log(output), TB, model = x))["log(output)"])
Costs of Currency and Banking Crises
Description
yearly observations of 22 countries from 1970 to 1997
number of observations : 616
number of time-series : 28
country : world
package : panel
JEL codes: F32, G15, G21, O16, O19, O47
Chapter : 06
Usage
data(TwinCrises)
Format
A dataframe containing:
- country
the country name
- year
the year
- gdp
real gdp growth
- pubsurp
change in budget surplus to real gdp ratio
- credit
credit growth
- extgdp
external growth rates (weight average)
- exr
real exchange rate overvaluation
- open
openess
- curcrises
currency crises
- bkcrises
banking crises
- twin
twin crises
- area
a factor with levels 'other', 'asia' and 'latam' (for latin America)
Source
Journal of Money, Credit and Banking : https://jmcb.osu.edu/archive
References
Hutchison, Michael M. and Ilan Noy (2005) “How Bad Are Twins ? Output Costs of Currency and Banking Crises”, Journal of Money, Credit and Banking, 37(4), 725–752.
Spatial weights matrix for EvapoTransp
Description
Spatial weights matrix for the EvapoTransp data frame
Usage
data(etw)
Format
A 86x86 matrix with elements different from zero if area i and j are neighbours. Weights are row standardized.
Author(s)
Giovanni Millo
Spatial weights matrix - 49 US states
Description
Spatial weights matrix of the 48 continental US States plus District of Columbia based on the queen contiguity criterium.
Usage
data(usaw49)
data(usaw46)
Format
A matrix with elements different from zero if state i and j are neighbors. Weights are row standardized. According to the queen contiguity criterium, Arizona and Colorado are considered neighbours. Two versions are provided, one for 49 States, the other one for 46 States.
Author(s)
Giovanni Millo