Title: | Create Pivot Table Easily |
Version: | 1.0.2 |
Description: | Pivot easily by specifying rows, columns, values and split. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.1 |
URL: | https://github.com/matutosi/pivotea, https://matutosi.github.io/pivotea/ |
LazyData: | true |
Imports: | dplyr, purrr, rlang, tidyr |
Suggests: | ggplot2, knitr, rmarkdown, spelling, testthat (≥ 3.0.0), tibble |
Config/testthat/edition: | 3 |
Language: | en-US |
VignetteBuilder: | knitr |
Depends: | R (≥ 2.10) |
NeedsCompilation: | no |
Packaged: | 2024-07-13 06:17:44 UTC; matutosi |
Author: | Toshikazu Matsumura
|
Maintainer: | Toshikazu Matsumura <matutosi@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2024-07-13 06:40:02 UTC |
Add sub index within group
Description
Add sub index within group
Usage
add_group_sub(df, group, sep = "_", tmp_col = "tmp_col")
Arguments
df |
A dataframe. |
group |
A string or string vector. When vector, the first string will be used for adding sub index. |
sep |
A string for separator. |
tmp_col |
A string of colnames for temporary use. |
Value
A dataframe.
Examples
library(dplyr)
add_group_sub(mtcars, c("am", "gear"))
add_group_sub(mtcars, c("cyl", "am"))
Helper for na_col_omit()
Description
Helper for na_col_omit()
Usage
extract_col(col, df)
Arguments
col |
A string or string vector. |
df |
A dataframe. |
Value
A vector.
Examples
library(tidyr)
library(dplyr)
library(purrr)
library(ggplot2)
hogwarts |>
pivot(row = "hour", col = "wday",
value = c("subject", "teacher", "room"),
split = c("house", "grade"))
hogwarts |>
pivot(row = "hour", col = "wday",
value = c("subject", "room", "house", "grade"),
split = c("teacher"))
starwars |>
pivot(row = "homeworld", col = "species", value = "name", split = "sex")
msleep |>
pivot(row = "vore", col = "conservation", value = "name") |>
na2empty() |>
print(n = Inf)
tibble::as_tibble(Titanic) |>
pivot(row = "Age", col = c("Sex", "Survived"),
value = "n", split = "Class")
diamonds |>
pivot(row = "cut", col = "color", value = "price", split = "clarity")
Detect if df has col
Description
Detect if df has col
Usage
has_col(df, col)
Arguments
df |
A dataframe. |
col |
A string or string vector. |
Value
A dataframe.
Examples
colnames(mtcars)
has_col(mtcars, c("mpg", "cyl"))
has_col(mtcars, c("mpg", "foo"))
Timetable in Hogwarts School of Witchcraft and Wizardry.
Description
Timetable in Hogwarts School of Witchcraft and Wizardry.
Usage
hogwarts
Format
A data frame with 548 rows and 7 variable:
- grade
Grades in school.
- house
Houses. G: Gryffindor, S: Slytherin, R: Ravenclaw, and H: Hufflepuff.
- wday
Abbreviations of day of the week.
- hour
Hours.
- teacher
Teachers.
- subject
Subjects.
- room
Examples
data(hogwarts)
hogwarts
replace NA character into ""
Description
replace NA character into ""
Usage
na2empty(df)
Arguments
df |
A dataframe. |
Value
A dataframe.
Examples
library(tidyr)
library(dplyr)
library(purrr)
library(ggplot2)
hogwarts |>
pivot(row = "hour", col = "wday",
value = c("subject", "teacher", "room"),
split = c("house", "grade"))
hogwarts |>
pivot(row = "hour", col = "wday",
value = c("subject", "room", "house", "grade"),
split = c("teacher"))
starwars |>
pivot(row = "homeworld", col = "species", value = "name", split = "sex")
msleep |>
pivot(row = "vore", col = "conservation", value = "name") |>
na2empty() |>
print(n = Inf)
tibble::as_tibble(Titanic) |>
pivot(row = "Age", col = c("Sex", "Survived"),
value = "n", split = "Class")
diamonds |>
pivot(row = "cut", col = "color", value = "price", split = "clarity")
Remove all NA cols
Description
Remove all NA cols
Usage
omit_na_cols(df)
Arguments
df |
A dataframe. |
Value
A dataframe.
Examples
library(tidyr)
library(dplyr)
library(purrr)
library(ggplot2)
hogwarts |>
pivot(row = "hour", col = "wday",
value = c("subject", "teacher", "room"),
split = c("house", "grade"))
hogwarts |>
pivot(row = "hour", col = "wday",
value = c("subject", "room", "house", "grade"),
split = c("teacher"))
starwars |>
pivot(row = "homeworld", col = "species", value = "name", split = "sex")
msleep |>
pivot(row = "vore", col = "conservation", value = "name") |>
na2empty() |>
print(n = Inf)
tibble::as_tibble(Titanic) |>
pivot(row = "Age", col = c("Sex", "Survived"),
value = "n", split = "Class")
diamonds |>
pivot(row = "cut", col = "color", value = "price", split = "clarity")
Remove all NA rows
Description
Remove all NA rows
Usage
omit_na_rows(df)
Arguments
df |
A dataframe. |
Value
A dataframe.
Examples
library(tidyr)
library(dplyr)
library(purrr)
library(ggplot2)
hogwarts |>
pivot(row = "hour", col = "wday",
value = c("subject", "teacher", "room"),
split = c("house", "grade"))
hogwarts |>
pivot(row = "hour", col = "wday",
value = c("subject", "room", "house", "grade"),
split = c("teacher"))
starwars |>
pivot(row = "homeworld", col = "species", value = "name", split = "sex")
msleep |>
pivot(row = "vore", col = "conservation", value = "name") |>
na2empty() |>
print(n = Inf)
tibble::as_tibble(Titanic) |>
pivot(row = "Age", col = c("Sex", "Survived"),
value = "n", split = "Class")
diamonds |>
pivot(row = "cut", col = "color", value = "price", split = "clarity")
Pivot easily by specifying rows, columns, values and split.
Description
Pivot easily by specifying rows, columns, values and split.
Usage
pivot(df, row, col, value, split = NULL, sep = "_", rm_empty_df = TRUE)
Arguments
df |
A dataframe. |
row , value |
A string or string vector. |
col |
A string or string vector. |
split |
A string or string vector. |
sep |
A string for separator. |
rm_empty_df |
A logical for removing empty df. |
Value
A dataframe.
Examples
library(tidyr)
library(dplyr)
library(purrr)
library(ggplot2)
hogwarts |>
pivot(row = "hour", col = "wday",
value = c("subject", "teacher", "room"),
split = c("house", "grade"))
hogwarts |>
pivot(row = "hour", col = "wday",
value = c("subject", "room", "house", "grade"),
split = c("teacher"))
starwars |>
pivot(row = "homeworld", col = "species", value = "name", split = "sex")
msleep |>
pivot(row = "vore", col = "conservation", value = "name") |>
na2empty() |>
print(n = Inf)
tibble::as_tibble(Titanic) |>
pivot(row = "Age", col = c("Sex", "Survived"),
value = "n", split = "Class")
diamonds |>
pivot(row = "cut", col = "color", value = "price", split = "clarity")
Replace a col with a data.frame.
Description
Replace a col with a data.frame.
Usage
replace_col(df, replace)
Arguments
df , replace |
A dataframe. |
Value
A dataframe.
Examples
(state <- tibble::tibble(state = state.name, area = state.area))
(abb <- tibble::tibble(state = state.name, abb = state.abb))
replace_col(state, abb)
Split by force with "" when split is NULL
Description
Split by force with "" when split is NULL
Usage
split_force(df, split)
Arguments
df |
A dataframe. |
split |
A string or string vector. |
Value
A dataframe.
Examples
split_force(mtcars, split = NULL)
split_force(mtcars, split = c("cyl"))
Validate col
Description
Validate col
Usage
validate_col(df, col)
Arguments
df |
A dataframe. |
col |
A string or string vector. |
Value
A dataframe.
Examples
library(tidyr)
library(dplyr)
library(purrr)
library(ggplot2)
hogwarts |>
pivot(row = "hour", col = "wday",
value = c("subject", "teacher", "room"),
split = c("house", "grade"))
hogwarts |>
pivot(row = "hour", col = "wday",
value = c("subject", "room", "house", "grade"),
split = c("teacher"))
starwars |>
pivot(row = "homeworld", col = "species", value = "name", split = "sex")
msleep |>
pivot(row = "vore", col = "conservation", value = "name") |>
na2empty() |>
print(n = Inf)
tibble::as_tibble(Titanic) |>
pivot(row = "Age", col = c("Sex", "Survived"),
value = "n", split = "Class")
diamonds |>
pivot(row = "cut", col = "color", value = "price", split = "clarity")