## ---- echo = FALSE, out.width = "100%"---------------------------------------- knitr::include_graphics("../man/figures/promor_ProtAnalysisFlowChart_small.png") ## ----example, results = 'hide', warning=FALSE, eval = FALSE------------------- # # Load promor # library(promor) # # # Create a raw_df object with the files provided in this github account. # raw <- create_df( # prot_groups = "https://raw.githubusercontent.com/caranathunge/promor_example_data/main/pg1.txt", # exp_design = "https://raw.githubusercontent.com/caranathunge/promor_example_data/main/ed1.txt" # ) # # # Filter out proteins with high levels of missing data in either condition/group # raw_filtered <- filterbygroup_na(raw) # # # Impute missing data and create an imp_df object. # imp_df <- impute_na(raw_filtered) # # # Normalize data and create a norm_df object # norm_df <- normalize_data(imp_df) # # # Perform differential expression analysis and create a fit_df object # fit_df <- find_dep(norm_df) ## ----volcanoplot, warning = FALSE, dpi = 300, out.width = '70%', fig.align ='center', eval = FALSE---- # volcano_plot(fit_df, text_size = 5) ## ---- echo = FALSE, out.width = "100%"---------------------------------------- knitr::include_graphics("../man/figures/promor_ProtModelingFlowChart_small.png") ## ----modeling_example, results = 'hide', warning = FALSE,message = F, eval = FALSE---- # # First, let's make a model_df object of top differentially expressed proteins. # # We will be using example fit_df and norm_df objects provided with the package. # covid_model_df <- pre_process( # fit_df = covid_fit_df, # norm_df = covid_norm_df # ) # # Next, we split the data into training and test data sets # covid_split_df <- split_data(model_df = covid_model_df) # # # Let's train our models using the default list of machine learning algorithms # covid_model_list <- train_models(split_df = covid_split_df) # # # We can now use our models to predict the test data # covid_prob_list <- test_models( # model_list = covid_model_list, # split_df = covid_split_df # ) ## ----rocplot, warning = FALSE, dpi = 300, out.width = '90%', fig.align ='center', message = F, eval = FALSE---- # # roc_plot( # probability_list = covid_prob_list, # split_df = covid_split_df # )