## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, eval = FALSE) options(rmarkdown.html_vignette.check_title = FALSE) ## ----install1, eval = FALSE--------------------------------------------------- # install.packages("psbcSpeedUp") ## ----install2, eval = FALSE--------------------------------------------------- # #install.packages("remotes") # remotes::install_github("ocbe-uio/psbcSpeedUp") ## ----results='hide', warning=FALSE-------------------------------------------- # # Load the example dataset # data("exampleData", package = "psbcSpeedUp") # p <- exampleData$p # q <- exampleData$q # survObj <- exampleData[1:3] # # # Set hyperparameters (see help file for specifying more hyperparameters) # mypriorPara <- list('eta0'=0.02, 'kappa0'=1, 'c0'=2, 'r'=10/9, 'delta'=1e-05, # 'lambdaSq'=1, 'sigmaSq'= runif(1, 0.1, 10), 'beta.prop.var'=1, 'beta.clin.var'=1) # # # run Bayesian Lasso Cox # library("psbcSpeedUp") # set.seed(123) # fitBayesCox <- psbcSpeedUp(survObj, p=p, q=q, hyperpar=mypriorPara, # nIter=1000, burnin=500, outFilePath="/tmp") ## ----fig.width=5, fig.height=8------------------------------------------------ # plot(fitBayesCox) ## ----fig.width=6, fig.heigh=5------------------------------------------------- # plotBrier(fitBayesCox, times = 80) ## ----------------------------------------------------------------------------- # predict(fitBayesCox, type = c("cumhazard", "survival"))