--- title: "Pool Model Performance" author: "Martijn W Heymans" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Pool Model Performance} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(survival) library(psfmi) ``` # Introduction The `psfmi` package includes the function `pool_performance`, to pool the performance measures of logistic and Cox regression models. This vignette show you how to use this function. # Examples # Performance Logistic regression model The performance of a logistic regression model across multiply imputed datasets can be obtained as follows. ```{r} perf <- pool_performance(data=lbpmilr, nimp=5, impvar="Impnr", formula = Chronic ~ Gender + Pain + Tampascale + Smoking + Function + Radiation + Age + Duration + BMI, cal.plot=TRUE, plot.method="mean", groups_cal=10, model_type="binomial") perf ``` # Performance Cox regression model For a Cox regression model the following code can be used. ```{r} perf <- pool_performance(data=lbpmicox, nimp=5, impvar="Impnr", formula = Surv(Time, Status) ~ Duration + Pain + Tampascale + factor(Expect_cat) + Function + Radiation + Age , cal.plot=FALSE, model_type="survival") perf ```