## ---- echo=FALSE-------------------------------------------------------------- library(rmarkdown) ## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- message=FALSE----------------------------------------------------------- library(ptable) ## ----------------------------------------------------------------------------- packageVersion("ptable") ## ----------------------------------------------------------------------------- # note: # all parameters except for maximum noise D and variance V have default values ptab <- create_cnt_ptable(D = 2, V = 1) ## ----------------------------------------------------------------------------- str(ptab) ## ----------------------------------------------------------------------------- # note: to look at a specific slot, just name the object and add the # corresponding slot with a leading "@" ptab@tMatrix ## ----------------------------------------------------------------------------- diag(ptab@tMatrix) ## ----------------------------------------------------------------------------- # let's have a look at the number of different original positive frequency # counts that will be treated params <- slot(ptab, "pParams") params@ncat # if this number is added by +1 (for the zero count) we get params@ncat + 1 ## ----------------------------------------------------------------------------- # the object @pClasses shows all original frequencies # that have their own distribution ptab@pClasses # symmetry is achieved for the original frequency count i=... max(ptab@pClasses) # or ptab@pClasses[params@ncat + 1] ## ---- echo=FALSE-------------------------------------------------------------- a <- ptab@tMatrix[max(ptab@pClasses) + 1, ] names(a) <- as.character(c(1:5)) a ## ---- echo=FALSE-------------------------------------------------------------- b <- ptab@tMatrix[max(ptab@pClasses) + 1, ] names(b) <- as.character(12326 + c(-2:2)) b ## ----------------------------------------------------------------------------- ptab@empResults ## ----------------------------------------------------------------------------- ptab_new <- create_cnt_ptable(D = 2, V = 0.9) ptab_new@empResults ## ----------------------------------------------------------------------------- ptab_new@tMatrix ## ----------------------------------------------------------------------------- ptab_new@pTable ## ----------------------------------------------------------------------------- mod_ptab_new <- modify_cnt_ptable(ptab_new, threshold = 0.2, seed = 123) ## ----------------------------------------------------------------------------- mod_ptab_new@pTable ## ----------------------------------------------------------------------------- # note: once again, check the diagonal entries ptable_e21 <- create_cnt_ptable(D = 4, V = 1, pstay = 0.5) # note: once again, check the empirical results or the diagonal entries ptable_e21@empResults diag(ptable_e21@tMatrix) ## ----------------------------------------------------------------------------- ptable_e22 <- create_cnt_ptable(D = 5, V = 3, js = 2) ptable_e22@tMatrix ## ----------------------------------------------------------------------------- result <- create_cnt_ptable(D = 4, V = 1) params <- slot(result, "pParams") # and let's check the number of different positive original frequencies params@ncat ## ----------------------------------------------------------------------------- # note: so far we have used a scalar for "pstay"", but now we use a vector result <- create_cnt_ptable(D = 4, V = 1, pstay = c(0.5, 0.5, 0.7, 0.8)) params <- slot(result, "pParams") # let's check the results result@empResults ## ----------------------------------------------------------------------------- # note: in the example we are working with the following result result <- create_cnt_ptable( D = 2, V = 1.08, js = 1, mono = c(TRUE, TRUE, FALSE, TRUE) ) ## ---- fig.height=5, fig.width = 7--------------------------------------------- # note: we have to use the argument type for specifying the plot plot(result, type = "t") ## ---- fig.height=5, fig.width = 7--------------------------------------------- plot(result, type = "p") ## ---- fig.height=5, fig.width = 7--------------------------------------------- plot(result, type = "d") ## ---- eval=FALSE-------------------------------------------------------------- # plot(result, type = "d", file = "graph.pdf") ## ---- eval=FALSE-------------------------------------------------------------- # # for Tau-Argus # pt_export(result, file = "ptable.txt", SDCtool = "TauArgus") # # or for SAS # pt_export(result, file = "ptable.txt", SDCtool = "SAS") ## ----------------------------------------------------------------------------- result <- create_cnt_ptable(D = 4, V = 1.5, pstay = c(0.8, 0.9, 0.9, 0.9)) # let's check the results result@empResults ## ---- fig.height=5, fig.width = 7--------------------------------------------- plot(result, type = "d") ## ---- fig.height=5, fig.width = 7--------------------------------------------- result <- create_cnt_ptable(D = 4, V = 1.225, pstay = c(0.8, 0.9, 0.9, 0.9)) plot(result, type = "d") ## ---- fig.height=5, fig.width = 7--------------------------------------------- result <- create_cnt_ptable( D = 4, V = 1.5, pstay = c(0.8, 0.9, 0.9, 0.9), mono = c(FALSE, TRUE, TRUE, TRUE) ) plot(result, type = "d") ## ----------------------------------------------------------------------------- res <- create_num_ptable(D = 2, V = 1, icat = c(1, 2))